18,490 research outputs found

    Advantages of the multinucleon transfer reactions based on 238U target for producing neutron-rich isotopes around N = 126

    Full text link
    The mechanism of multinucleon transfer (MNT) reactions for producing neutron-rich heavy nuclei around N = 126 is investigated within two different theoretical frameworks: dinuclear system (DNS) model and isospin-dependent quantum molecular dynamics (IQMD) model. The effects of mass asymmetry relaxation, N=Z equilibration, and shell closures on production cross sections of neutron-rich heavy nuclei are investigated. For the first time, the advantages for producing neutron-rich heavy nuclei around N = 126 is found in MNT reactions based on 238U target. We propose the reactions with 238U target for producing unknown neutron-rich heavy nuclei around N = 126 in the future.Comment: 6 pages, 6 figure

    Resilient neural network training for accelerators with computing errors

    Get PDF
    —With the advancements of neural networks, customized accelerators are increasingly adopted in massive AI applications. To gain higher energy efficiency or performance, many hardware design optimizations such as near-threshold logic or overclocking can be utilized. In these cases, computing errors may happen and the computing errors are difficult to be captured by conventional training on general purposed processors (GPPs). Applying the offline trained neural network models to the accelerators with errors directly may lead to considerable prediction accuracy loss. To address this problem, we explore the resilience of neural network models and relax the accelerator design constraints to enable aggressive design options. First of all, we propose to train the neural network models using the accelerators’ forward computing results such that the models can learn both the data and the computing errors. In addition, we observe that some of the neural network layers are more sensitive to the computing errors. With this observation, we schedule the most sensitive layer to the attached GPP to reduce the negative influence of the computing errors. According to the experiments, the neural network models obtained from the proposed training outperform the original models significantly when the CNN accelerators are affected by computing errors

    Canonical interpretation of Y(10750)Y(10750) and ΄(10860)\Upsilon(10860) in the ΄\Upsilon family

    Full text link
    Inspired by the new resonance Y(10750)Y(10750), we calculate the masses and two-body OZI-allowed strong decays of the higher vector bottomonium sates within both screened and linear potential models. We discuss the possibilities of ΄(10860)\Upsilon(10860) and Y(10750)Y(10750) as mixed states via the S−DS-D mixing. Our results suggest that Y(10750)Y(10750) and ΄(10860)\Upsilon(10860) might be explained as mixed states between 5S5S- and 4D4D-wave vector bbˉb\bar{b} states. The Y(10750)Y(10750) and ΄(10860)\Upsilon(10860) resonances may correspond to the mixed states dominated by the 4D4D- and 5S5S-wave components, respectively. The mass and the strong decay behaviors of the ΄(11020)\Upsilon(11020) resonance are consistent with the assignment of the ΄(6S)\Upsilon(6S) state in the potential models.Comment: 9 pages, 4 figures. More discussions are adde
    • 

    corecore