124 research outputs found

    The rapid generation of chimerical genes expanding protein diversity in zebrafish

    Get PDF
    AbstractBackgroundVariation of gene number among species indicates that there is a general process of new gene origination. One of the major mechanism providing raw materials for the origin of new genes is gene duplication. Retroposition, as a special type of gene duplication- the RNA-based duplication, has been found to play an important role in new gene evolution in mammals and plants, but little is known about the process in the teleostei genome.ResultsHere we screened the zebrafish genome for identification of retrocopies and new chimerical retrogenes and investigated their origination and evolution. We identified 652 retrocopies, of which 440 are intact retrogenes and 212 are pseudogenes. Retrocopies have long been considered evolutionary dead ends without functional significance due to the presumption that retrocopies lack the regulatory element needed for expression. However, 437 transcribed retrocopies were identified from all of the retrocopies. This discovery combined with the substitution analysis suggested that the majority of all retrocopies are subject to negative selection, indicating that most of the retrocopies may be functional retrogenes. Moreover, we found that 95 chimerical retrogenes had recruited new sequences from neighboring genomic regions that formed de novo splice sites, thus generating new intron-containing chimeric genes. Based on our analysis of 38 pairs of orthologs between Cyprinus carpio and Danio rerio, we found that the synonymous substitution rate of zebrafish genes is 4.13×10-9 substitution per silent site per year. We also found 10 chimerical retrogenes that were created in the last 10 million years, which is 7.14 times the rate of 0.14 chimerical retrogenes per million years in the primate lineage toward human and 6.25 times the rate of 0.16 chimerical genes per million years in Drosophila. This is among the most rapid rates of generation of chimerical genes, just next to the rice.ConclusionThere is compelling evidence that much of the extensive transcriptional activity of retrogenes does not represent transcriptional "noise" but indicates the functionality of these retrogenes. Our results indicate that retroposition created a large amount of new genes in the zebrafish genome, which has contributed significantly to the evolution of the fish genome

    Positive selection for the male functionality of a co-retroposed gene in the hominoids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New genes generated by retroposition are widespread in humans and other mammalian species. Usually, this process copies a single parental gene and inserts it into a distant genomic location. However, retroposition of two adjacent parental genes, <it>i.e</it>. co-retroposition, had not been reported until the hominoid chimeric gene, <it>PIPSL</it>, was identified recently. It was shown how two genes linked in tandem (phosphatidylinositol-4-phosphate 5-kinase, type I, alpha, <it>PIP5K1A </it>and proteasome 26S subunit, non-ATPase, 4, <it>PSMD4</it>) could be co-retroposed from a single RNA molecule to form this novel chimeric gene. However, understanding of the origination and biological function of <it>PIPSL </it>requires determination of the coding potential of this gene as well as the evolutionary forces acting on its hominoid copies.</p> <p>Results</p> <p>We tackled these problems by analyzing the evolutionary signature in both within-species variation and between species divergence in the sequence and structure of the gene. We revealed a significant evolutionary signature: the coding region has significantly lower sequence variation, especially insertions and deletions, suggesting that the human copy may encode a protein. Moreover, a survey across five different hominoid species revealed that all adaptive changes of <it>PSMD4</it>-derived regions occurred on branches leading to human and chimp rather than other hominoid lineages. Finally, computational analysis suggests testis-specific transcription of <it>PIPSL </it>is regulated by tissue-dependent methylation rather than some transcriptional leakage.</p> <p>Conclusion</p> <p>Therefore, this set of analyses showed that <it>PIPSL </it>is an extraordinary co-retroposed protein-coding gene that may participate in the male functions of humans and its close relatives.</p
    corecore