39,894 research outputs found
On-board timeline validation and repair : a feasibility study
We report on the progress and outcome of a recent ESAfunded project (MMOPS) designed to explore the feasibility of on-board reasoning about payload timelines. The project sought to examine the role of on-board timeline reasoning and the operational context into which it would fit. We framed a specification for an on-board service that fits with existing practices and represents a plausible advance within sensible constraints on the progress of operations planning. We have implemented a prototype to demonstrate the feasibility of such a system and have used it to show how science gathering operations might be improved by its deployment
Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities
The absolute integrated intensity of the single-phonon Raman peak at 1580
cm^{-1} is calculated for a clean graphene monolayer. The resulting intensity
is determined by the trigonal warping of the electronic bands and the
anisotropy of the electron-phonon coupling, and is proportional to the second
power of the excitation frequency. The main contribution to the process comes
from the intermediate electron-hole states with typical energies of the order
of the excitation frequency, contrary to what has been reported earlier. This
occurs because of strong cancellations between different terms of the
perturbation theory, analogous to Ward identities in quantum electrodynamics
The Precise Formula in a Sine Function Form of the norm of the Amplitude and the Necessary and Sufficient Phase Condition for Any Quantum Algorithm with Arbitrary Phase Rotations
In this paper we derived the precise formula in a sine function form of the
norm of the amplitude in the desired state, and by means of he precise formula
we presented the necessary and sufficient phase condition for any quantum
algorithm with arbitrary phase rotations. We also showed that the phase
condition: identical rotation angles, is a sufficient but not a necessary phase
condition.Comment: 16 pages. Modified some English sentences and some proofs. Removed a
table. Corrected the formula for kol on page 10. No figure
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State
Preparation of a quantum register is an important step in quantum computation
and quantum information processing. It is straightforward to build a simple
quantum state such as |i_1 i_2 ... i_n\ket with being either 0 or 1,
but is a non-trivial task to construct an {\it arbitrary} superposed quantum
state. In this Paper, we present a scheme that can most generally initialize a
quantum register with an arbitrary superposition of basis states.
Implementation of this scheme requires standard 1- and 2-bit gate
operations, {\it without introducing additional quantum bits}. Application of
the scheme in some special cases is discussed.Comment: 4 pages, 4 figures, accepted by Phys. Rev.
- âŠ