556 research outputs found

    Did the accuracy of oral amoxicillin dosing of children improve after British National Formulary dose revisions in 2014? National cross-sectional survey in England.

    Get PDF
    OBJECTIVES: Inaccurate antibiotic dosing can lead to treatment failure, fuel antimicrobial resistance and increase side effects. The British National Formulary for Children (BNFC) guidance recommends oral antibiotic dosing according to age bands as a proxy for weight. Recommended doses of amoxicillin for children were increased in 2014 'after widespread concerns of under dosing'. However, the impact of dose changes on British children of different weights is unknown, particularly given the rising prevalence of childhood obesity in the UK. We aimed to estimate the accuracy of oral amoxicillin dosing in British children before and after the revised BNFC guidance in 2014. SETTING AND PARTICIPANTS: We used data on age and weights for 1556 British children (aged 2-18 years) from a nationally representative cross-sectional survey, the Health Survey for England 2013. INTERVENTIONS: We calculated the doses each child would receive using the BNFC age band guidance, before and after the 2014 changes, against the 'gold standard' weight-based dose of amoxicillin, as per its summary of product characteristics. PRIMARY OUTCOME MEASURE: Assuming children of different weights were equally likely to receive antibiotics, we calculated the percentage of the children who would be at risk of misdosing by the BNFC age bands. RESULTS: Before 2014, 54.6% of children receiving oral amoxicillin would have been underdosed and no child would have received more than the recommended dose. After the BNFC guidance changed in 2014, the number of children estimated as underdosed dropped to 5.8%, but 0.5% of the children would have received too high a dose. CONCLUSIONS: Changes to the BNFC age-banded amoxicillin doses in 2014 have significantly reduced the proportion of children who are likely to be underdosed, with only a minimal rise in the number of those above the recommended range

    High glucose up-regulates ENaC and SGK1 expression in HCD-cells

    Get PDF
    Background/Aim: Diabetic nephropathy is associated with progressive renal damage, leading to impaired function and end-stage renal failure. Secondary hypertension stems from a deranged ability of cells within the kidney to resolve and appropriately regulate sodium resorption in response to hyperglycaemia. However, the mechanisms by which glucose alters sodium re-uptake have not been fully characterised. Methods: Here we present RT-PCR, western blot and immunocytochemistry data confirming mRNA and protein expression of the serum and glucocorticoid inducible kinase (SGK1) and the a conducting subunit of the epithelial sodium channel (ENaC) in a model in vitro system of the human cortical collecting duct (HCD). We examined changes in expression of these elements in response to glucose challenge, designed to mimic hyperglycaemia associated with type 2 diabetes mellitus. Changes in Na+ concentration were assessed using single-cell microfluorimetry. Results: Incubation with glucose, the Ca2+-ionophore ionomycin and the cytokine TGF-beta 1 were all found to evoke significant and time-dependent increases in both SGK1 and alpha ENaC protein expression. These molecular changes were correlated to an increase in Na+-uptake at the single-cell level. Conclusion: Together these data offer a potential explanation for glucose-evoked Na+-resorption and a potential contributory role of SGK1 and ENaCs in development of secondary hypertension, commonly linked to diabetic nephropathy

    Detection of Interstellar HC4_4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions

    Full text link
    We report an astronomical detection of HC4_4NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of 10.5σ10.5 \sigma. The total column density and excitation temperature of HC4_4NC are determined to be 3.29−1.20+8.60×10113.29^{+8.60}_{-1.20}\times 10^{11} cm−2^{-2} and 6.7−0.3+0.36.7^{+0.3}_{-0.3} K, respectively, using the MCMC analysis. In addition to HC4_4NC, HCCNC is distinctly detected whereas no clear detection of HC6_6NC is made. We propose that the dissociative recombination of the protonated cyanopolyyne, HC5_5NH+^+, and the protonated isocyanopolyyne, HC4_4NCH+^+, are the main formation mechanisms for HC4_4NC while its destruction is dominated by reactions with simple ions and atomic carbon. With the proposed chemical networks, the observed abundances of HC4_4NC and HCCNC are reproduced satisfactorily.Comment: Accepted in the Astrophysical Journal Letter

    Detection of Two Interstellar Polycyclic Aromatic Hydrocarbons via Spectral Matched Filtering

    Full text link
    Ubiquitous unidentified infrared emission bands are seen in many astronomical sources. Although these bands are widely, if not unanimously, attributed to the collective emission from polycyclic aromatic hydrocarbons, no single species from this class has been detected in space. We present the discovery of two -CN functionalized polycyclic aromatic hydrocarbons, 1- and 2-cyanonaphthalene, in the interstellar medium aided by spectral matched filtering. Using radio observations with the Green Bank Telescope, we observe both bi-cyclic ring molecules in the molecular cloud TMC-1. We discuss potential in situ gas-phase formation pathways from smaller organic precursor molecules

    Searches for Interstellar HCCSH and Hâ‚‚CCS

    Get PDF
    A longstanding problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new laboratory data, we report searches for the rotational lines in the microwave, millimeter, and submillimeter regions of the sulfur-containing hydrocarbon HCCSH. This simple species would appear to be a promising candidate for detection in space owing to the large dipole moment along its b-inertial axis, and because the bimolecular reaction between two highly abundant astronomical fragments (CCH and SH radicals) may be rapid. An inspection of multiple line surveys from the centimeter to the far-infrared toward a range of sources from dark clouds to high-mass star-forming regions, however, resulted in nondetections. An analogous search for the lowest-energy isomer, H₂CCS, is presented for comparison, and also resulted in nondetections. Typical upper limits on the abundance of both species relative to hydrogen are 10^(−9)–10^(−10). We thus conclude that neither isomer is a major reservoir of interstellar sulfur in the range of environments studied. Both species may still be viable candidates for detection in other environments or at higher frequencies, providing laboratory frequencies are available

    An Updated Search of Steady TeV γ−\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ−\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.0∘0.0^{\circ} to 60.0∘60.0^{\circ} in declination (Dec) range, no new TeV γ−\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ−\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    Unsafe "crossover-use" of chloramphenicol in Uganda: importance of a One Health approach in antimicrobial resistance policy and regulatory action.

    Get PDF
    Since the introduction of antibiotics into mainstream health care, resistance to these drugs has become a widespread issue that continues to increase worldwide. Policy decisions to mitigate the development of antimicrobial resistance are hampered by the current lack of surveillance data on antibiotic product availability and use in low-income countries. This study collected data on the antibiotics stocked in human (42) and veterinary (21) drug shops in five sub-counties in Luwero district of Uganda. Focus group discussions with drug shop vendors were also employed to explore antibiotic use practices in the community. Focus group participants reported that farmers used human-intended antibiotics for their livestock, and community members obtain animal-intended antibiotics for their own personal human use. Specifically, chloramphenicol products licensed for human use were being administered to Ugandan poultry. Human consumption of chloramphenicol residues through local animal products represents a serious public health concern. By limiting the health sector scope of antimicrobial resistance research to either human or animal antibiotic use, results can falsely inform policy and intervention strategies. Therefore, a One Health approach is required to understand the wider impact of community antibiotic use and improve overall effectiveness of intervention policy and regulatory action
    • …
    corecore