46,609 research outputs found
The Mayflies (Ephemeroptera) of Tennessee, With a Review of the Possibly Threatened Species Occurring Within the State
One hundred and forty-three species of mayflies are reported from the state of Tennessee. Sixteen species (Ameletus cryptostimulus, Choroterpes basalis, Baetis virile, Ephemera blanda, E. simulans, Ephemerella berneri, Heterocloeon curiosum, H. petersi, Labiobaetis ephippiatus, Leptophlebia bradleyi, Macdunnoa brunnea, Paraleptophlebia assimilis, P. debilis, P. mollis, Rhithrogenia pellucida and Siphlonurus mirus) are reported for the first time. Rare and vulnerable species occurring in the state are also discussed. This represents the first comprehensive statewide list of mayflies for Tennessee
A simplified holographic-interferometry technique for real-time flow visualization and analysis
A holographic-interferometry technique for flow visualization and analysis that produces real-time moire fringes is described from both experimental and application considerations. It has three chief advantages: real-time data for continuous observation and photography, ease of optical adjustment, and capability of using ordinary-glass test-section windows without affecting the results. A theoretical discussion is presented describing the formation of the fringes in holographic terms and then comparing this result to that which is obtained from a conventional moire approach. A discussion on obtaining density information from the fringe pattern is also included
Results of magnetospheric barium ion cloud experiment of 1971
The barium ion cloud experiment involved the release of about 2 kg of barium at an altitude of 31 482 km, a latitude of 6.926 N., and a longitude of 74.395 W. Significant erosion of plasma from the main ion core occurred during the initial phase of the ion cloud expansion. From the motion of the outermost striational filaments, the electric field components were determined to be 0.19 mV/m in the westerly direction and 0.68 mV/m in the inward direction. The differences between these components and those measured from balloons flown in the proximity of the extremity of the field line through the release point implied the existence of potential gradients along the magnetic field lines. The deceleration of the main core was greater than theoretically predicted. This was attributed to the formation of a polarization wake, resulting in an increase of the area of interaction and resistive dissipation at ionospheric levels. The actual orientation of the magnetic field line through the release point differed by about 10.5 deg from that predicted by magnetic field models that did not include the effect of ring current
The reverberation signatures of rotating disc winds in active galactic nuclei
The broad emission lines (BELs) in active galactic nuclei (AGN) respond to
ionizing continuum variations. The time and velocity dependence of their
response depends on the structure of the broad-line region: its geometry,
kinematics and ionization state. Here, we predict the reverberation signatures
of BELs formed in rotating accretion disc winds. We use a Monte Carlo radiative
transfer and ionization code to predict velocity-delay maps for representative
high- (C) and low-ionization (H) emission lines in both high- and
moderate-luminosity AGN. Self-shielding, multiple scattering and the ionization
structure of the outflows are all self-consistently taken into account, while
small-scale structure in the outflow is modelled in the micro-clumping
approximation. Our main findings are: (1) The velocity-delay maps of
smooth/micro-clumped outflows often contain significant negative responses.
(2)~The reverberation signatures of disc wind models tend to be rotation
dominated and can even resemble the classic "red-leads-blue" inflow signature.
(3) Traditional "blue-leads-red" outflow signatures can usually only be
observed in the long-delay limit. (4) Our models predict lag-luminosity
relationships similar to those inferred from observations, but systematically
underpredict the observed centroid delays. (5) The ratio between "virial
product" and black hole mass predicted by our models depends on viewing angle.
Our results imply that considerable care needs to be taken in interpreting data
obtained by observational reverberation mapping campaigns. In particular, basic
signatures such as "red-leads-blue", "blue-leads-red" and "blue and red vary
jointly" are not always reliable indicators of inflow, outflow or rotation.
This may help to explain the perplexing diversity of such signatures seen in
observational campaigns to date.Comment: 15 pages, 17 figures, 2 tables. Accepted by MNRAS 20/7/201
Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations
Millimeter wave (mmWave) communication technologies have recently emerged as
an attractive solution to meet the exponentially increasing demand on mobile
data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave
technology are expected to increase both energy efficiency and spectral
efficiency. In this paper, user association and power allocation in mmWave
based UDNs is considered with attention to load balance constraints, energy
harvesting by base stations, user quality of service requirements, energy
efficiency, and cross-tier interference limits. The joint user association and
power optimization problem is modeled as a mixed-integer programming problem,
which is then transformed into a convex optimization problem by relaxing the
user association indicator and solved by Lagrangian dual decomposition. An
iterative gradient user association and power allocation algorithm is proposed
and shown to converge rapidly to an optimal point. The complexity of the
proposed algorithm is analyzed and the effectiveness of the proposed scheme
compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201
- …