923 research outputs found

    Consumption and Investment Optimization under Constraints

    Get PDF
    We analyze a problem of maximization of expected terminal wealth and consumption under constraints in a general framework including financial models with constrained portfolios, labor income and large investor models. By using general optional decomposition under constraints in a multiplicative form, we first develop a dual formulation under minimal assumption modeled as in Pham and Mnif (2002). We then are able to prove an existence and uniqueness of an optimal solution to primal and to the corresponding dual problem. An optimal investment and consumption plan to the original problem then can be found by convex duality, similarly to the case considered by Kramkov and Schachermayer (1999).Stochastic Optimization, Consumption and Investment Optimization, Duality Theory, Convex and State Constraints, Utility Maximization, Optional Decomposition, Minimax Theorem}

    Investment Optimization under Constraints

    Get PDF
    We analyze general stochastic optimization financial problems under constraints in a general framework, which includes financial models with some ``imperfection'', such as constrained portfolios, labor income, random endowment and large investor models. By using general optional decomposition under constraints in a multiplicative form, we first develop a dual formulation under minimal assumption modeled as in Pham and Mnif (2002), Long (2002). We then are able to prove an existence and uniqueness of an optimal solution to primal and to the corresponding dual problem. An optimal investment to the original problem then can be found by convex duality, similarly to the case considered by Kramkov and Schachermayer (1999).Stochastic Optimization, Investment Optimization, Duality Theory, Convex and State Constraints, Optional Decomposition

    Utility Maximization in Imperfected Markets

    Get PDF
    We analyze a problem of maximization of expected terminal wealth and consumption in markets with some ``imperfection'', such as constraints on the permitted portfolios, labor income, or/and nonlinearity of portfolio dynamics. By using general optional decomposition under constraints in multiplicative form, we develop a dual formulation. Then, under some conditions imposed on the model setting and the utility functions, we are able to prove an existence and uniqueness of an optimal solution to primal and to the corresponding dual problem by convex duality.Stochastic Optimization, Utility Optimization, Duality Theory, Convex and State Constraints, Optional Decomposition, Optimal Stopping

    On the nonlinear wave equation utt−B(t,‖u‖2,‖ux‖2)uxx=f(x,t,u,ux,ut,‖u‖2,‖ux‖2) associated with the mixed homogeneous conditions

    Get PDF
    AbstractIn this paper we consider the following nonlinear wave equation: (1)utt−B(t,‖u‖2,‖ux‖2)uxx=f(x,t,u,ux,ut,‖u‖2,‖ux‖2), x∈(0,1), 0<t<T,(2)ux(0,t)−h0u(0,t)=ux(1,t)+h1u(1,t)=0,(3)u(x,0)=u˜0(x), ut(x,0)=u˜1(x), where h0>0, h1⩾0 are given constants and B, f, u˜0, u˜1 are given functions. In Eq. (1), the nonlinear terms B(t,‖u‖2,‖ux‖2), f(x,t,u,ux,ut,‖u‖2,‖ux‖2) depend on the integrals ‖u‖2=∫Ω|u(x,t)|2dx and ‖ux‖2=∫01|ux(x,t)|2dx. In this paper I associate with problem (1)–(3) a linear recursive scheme for which the existence of a local and unique solution is proved by using standard compactness argument. In case of B∈CN+1(R+3), B⩾b0>0, B1∈CN(R+3), B1⩾0, f∈CN+1([0,1]×R+×R3×R+2) and f1∈CN([0,1]×R+×R3×R+2) we obtain for the following equation utt−[B(t,‖u‖2,‖ux‖2)+ɛB1(t,‖u‖2,‖ux‖2)]uxx=f(x,t,u,ux,ut,‖u‖2,‖ux‖2)+ɛf1(x,t,u,ux,ut,‖u‖2,‖ux‖2) associated to (2), (3) a weak solution uɛ(x,t) having an asymptotic expansion of order N+1 in ɛ, for ɛ sufficiently small

    Optimal placement of battery energy storage system considering penetration of distributed generations

    Get PDF
    This paper proposes the optimal problem of location and power of the battery-energy-storage-system (BESS) on the distribution system (DS) considering different penetration levels of distributed generations (DGs). The objective is to minimize electricity cost of the DS in a typical day considering the power limit of DG fed to the DS. Growth optimizer (GO) is first applied to search the BESS’s location and power for each interval of the day. The considered problem and GO method are evaluated on the 18-node DS with two penetrations levels of photovoltaic system and wind turbine. The results demonstrate that the optimal BESS placement significantly reduces electricity cost. Furthermore, the optimal BESS location and power also help to reduce the cut capacity of DGs as their power greater than the load demand. The compared results between GO and particle swarm optimization (PSO) method have shown that GO reaches the better performance than PSO in term the optimal solution and the statistical results. Thus, GO is an effective approach for the BESS placement problem

    Outage performance analysis of non-orthogonal multiple access with time-switching energy harvesting

    Get PDF
    In recent years, although non-orthogonal multiple access (NOMA) has shown its potentials thanks to its ability to enhance the performance of future wireless communication networks, a number of issues emerge related to the improvement of NOMA systems. In this work, we consider a half-duplex (HD) relaying cooperative NOMA network using decode-and-forward (DF) transmission mode with energy harvesting (Ell) capacity, where we assume the NOMA destination (D) is able to receive two data symbols in two continuous time slots which leads to the higher transmission rate than traditional relaying networks. To analyse EH, we deploy time-switching (TS) architecture to comprehensively study the optimal transmission time and outage performance at D. In particular, we are going to obtain closed-form expressions for outage probability (OP) with optimal TS ratio for both data symbols with both exact and approximate forms. The given simulation results show that the placement of the relay (R) plays an important role in the system performance.Web of Science253918

    Existence and Decay of Solutions of a Nonlinear Viscoelastic Problem with a Mixed Nonhomogeneous Condition

    Full text link
    We study the initial-boundary value problem for a nonlinear wave equation given by u_{tt}-u_{xx}+\int_{0}^{t}k(t-s)u_{xx}(s)ds+ u_{t}^{q-2}u_{t}=f(x,t,u) , 0 < x < 1, 0 < t < T, u_{x}(0,t)=u(0,t), u_{x}(1,t)+\eta u(1,t)=g(t), u(x,0)=\^u_{0}(x), u_{t}(x,0)={\^u}_{1}(x), where \eta \geq 0, q\geq 2 are given constants {\^u}_{0}, {\^u}_{1}, g, k, f are given functions. In part I under a certain local Lipschitzian condition on f, a global existence and uniqueness theorem is proved. The proof is based on the paper [10] associated to a contraction mapping theorem and standard arguments of density. In Part} 2, under more restrictive conditions it is proved that the solution u(t) and its derivative u_{x}(t) decay exponentially to 0 as t tends to infinity.Comment: 26 page

    Power beacon-assisted energy harvesting in a half-duplex communication network under co-channel interference over a Rayleigh fading environment: Energy efficiency and outage probability analysis

    Get PDF
    In this time, energy efficiency (EE), measured in bits per Watt, has been considered as an important emerging metric in energy-constrained wireless communication networks because of their energy shortage. In this paper, we investigate power beacon assisted (PB) energy harvesting (EH) in half-duplex (HD) communication network under co-channel Interferer over Rayleigh fading environment. In this work, we investigate the model system with the time switching (TS) protocol. Firstly, the exact and asymptotic form expressions of the outage probability (OP) are analyzed and derived. Then the system EE is investigated and the influence of the primary system parameters on the system performance. Finally, we verify the correctness of the analytical expressions using Monte Carlo simulation. Finally, we can state that the simulation and analytical results are the same.Web of Science1213art. no. 257
    corecore