7 research outputs found

    Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan.

    No full text
    The brain's capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research

    Neural correlates of ingroup bias for prosociality in rats.

    No full text
    Prosocial behavior, in particular helping others in need, occurs preferentially in response to distress of one's own group members. In order to explore the neural mechanisms promoting mammalian helping behavior, a discovery-based approach was used here to identify brain-wide activity correlated with helping behavior in rats. Demonstrating social selectivity, rats helped others of their strain ('ingroup'), but not rats of an unfamiliar strain ('outgroup'), by releasing them from a restrainer. Analysis of brain-wide neural activity via quantification of the early-immediate gene c-Fos identified a shared network, including frontal and insular cortices, that was active in the helping test irrespective of group membership. In contrast, the striatum was selectively active for ingroup members, and activity in the nucleus accumbens, a central network hub, correlated with helping. In vivo calcium imaging showed accumbens activity when rats approached a trapped ingroup member, and retrograde tracing identified a subpopulation of accumbens-projecting cells that was correlated with helping. These findings demonstrate that motivation and reward networks are associated with helping an ingroup member and provide the first description of neural correlates of ingroup bias in rodents

    Neural activation associated with outgroup helping in adolescent rats.

    No full text
    Prosocial behavior, helping others in need in particular, occurs preferentially in response to the perceived distress of one's own group members or ingroup. To investigate the development of ingroup bias, neural activity during a helping test was analyzed in adolescent and adult rats. Although adults selectively released trapped ingroup members, adolescent rats helped both ingroup and outgroup members, suggesting that ingroup bias emerges in adulthood. Analysis of brain-wide neural activity, indexed by expression of the early-immediate gene c-Fos, revealed increased activity for ingroup members across a broad set of regions previously associated with empathy. Adolescents showed reduced hippocampal and insular activity and increased orbitofrontal cortex activity compared to adults. Non-helper adolescents demonstrated increased amygdala connectivity. These findings demonstrate that biases for group-dependent prosocial behavior develop with age in rats and suggest that specific brain regions contribute to prosocial selectivity, pointing to possible targets for the functional modulation of ingroup bias
    corecore