57 research outputs found

    The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Get PDF
    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression

    Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype

    Get PDF
    Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-positive (ER(pos)) MCF7 cell line. However, luminal specific comparisons have suffered from the lack of a relevant non-malignant counterpart. Our previous work has shown that transforming growth factor-β receptor (TGFβR) inhibition suffices to propagate prospectively isolated ER(pos) human breast luminal cells from reduction mammoplasties (HBEC). Here we demonstrate that transduction of these cells with hTERT/shp16 renders them immortal while remaining true to the luminal lineage including expression of functional ER (iHBEC(ERpos)). Under identical culture conditions a major difference between MCF7 and normal-derived cells is the dependence of the latter on TGFβR inhibition for ER expression. In a breast fibroblast co-culture model we further show that whereas MCF7 proliferate concurrently with ER expression, iHBEC(ERpos) form correctly polarized acini, and segregate into proliferating and ER expressing cells. We propose that iHBEC(ERpos) may serve to shed light on hitherto unappreciated differences in ER regulation and function between normal breast and breast cancer

    Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture

    Get PDF
    Investigating the susceptibility of oestrogen receptor-positive (ER(pos)) normal human breast epithelial cells (HBECs) for clinical purposes or basic research awaits a proficient cell-based assay. Here we set out to identify markers for isolating ER(pos) cells and to expand what appear to be post-mitotic primary cells into exponentially growing cultures. We report a robust technique for isolating ER(pos) HBECs from reduction mammoplasties by FACS using two cell surface markers, CD166 and CD117, and an intracellular cytokeratin marker, Ks20.8, for further tracking single cells in culture. We show that ER(pos) HBECs are released from growth restraint by small molecule inhibitors of TGFβ signalling, and that growth is augmented further in response to oestrogen. Importantly, ER signalling is functionally active in ER(pos) cells in extended culture. These findings open a new avenue of experimentation with normal ER(pos) HBECs and provide a basis for understanding the evolution of human breast cancer

    A CD146 FACS Protocol Enriches for Luminal Keratin 14/19 Double Positive Human Breast Progenitors

    Get PDF
    Publisher's version (útgefin grein).Human breast cancer is believed to arise in luminal progenitors within the normal breast. A subset of these are double positive (DP) for basal and luminal keratins and localizes to a putative stem cell zone within ducts. We here present a new protocol based on a combination of CD146 with CD117 and CD326 which provides an up to thirty fold enrichment of the DP cells. We show by expression profiling, colony formation, and morphogenesis that CD146high/CD117high/CD326high DP cells belong to a luminal progenitor compartment. While these DP cells are located quite uniformly in ducts, with age a variant type of DP (vDP) cells, which is mainly CD146-negative, accumulates in lobules. Intriguingly, in specimens with BRCA1 mutations known to predispose for cancer, higher frequencies of lobular vDP cells are observed. We propose that vDP cells are strong candidates for tracing the cellular origin of breast cancer.We thank Lena Kristensen, Tove Marianne Lund and Anita Sharma Friismose for expert technical assistance. Benedikte Thuesen and Trine Foged Henriksen, Capio CFR Hospitaler are acknowledged for providing breast biopsy material. The Core Facility for Integrated Microscopy (University of Copenhagen) is acknowledged for confocal microscope accessibility. This work was supported by Novo Nordisk Fonden and Danish Research Council grant 10-092798 (to DanStem), Toyota-Fonden Denmark and Anita og Tage Therkelsens Fond (to R.V.), Familien Erichsens Mindefond and Vera og Carl Johan Michaelsens Legat (to J.K.), Harboefonden, Else og Mogens Wedell-wedellborgs Fond and Danish Cancer Society Grant R146-A9257 (to L.R.-J.).Peer Reviewe

    Evidence of two distinct functionally specialized fibroblast lineages in breast stroma

    Get PDF
    BACKGROUND: The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. METHODS: The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271(low)/MUC1(high) normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. RESULTS: Lobular fibroblasts are CD105(high)/CD26(low) while interlobular fibroblasts are CD105(low)/CD26(high). Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. CONCLUSIONS: Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-016-0769-2) contains supplementary material, which is available to authorized users

    Evidence for a stem cell hierarchy in the adult human breast

    Get PDF
    Cellular pathways that contribute to adult human mammary gland architecture and lineages have not been previously described. In this study, we identify a candidate stem cell niche in ducts and zones containing progenitor cells in lobules. Putative stem cells residing in ducts were essentially quiescent, whereas the progenitor cells in the lobules were more likely to be actively dividing. Cells from ducts and lobules collected under the microscope were functionally characterized by colony formation on tissue culture plastic, mammosphere formation in suspension culture, and morphogenesis in laminin-rich extracellular matrix gels. Staining for the lineage markers keratins K14 and K19 further revealed multipotent cells in the stem cell zone and three lineage-restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites in situ confirmed this pattern. The proposal that the four cell types are indeed constituents of an as of yet undescribed stem cell hierarchy was assessed in long-term cultures in which senescence was bypassed. These findings identify an adult human breast ductal stem cell activity and its earliest descendants

    The Danish National Acute Leukemia Registry

    Get PDF
    AIM OF DATABASE: The main aim of the Danish National Acute Leukemia Registry (DNLR) was to obtain information about the epidemiology of the hematologic cancers acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and myelodysplastic syndrome (MDS). STUDY POPULATION: The registry was established in January 2000 by the Danish Acute Leukemia Group and has been expanded over the years. It includes adult AML patients diagnosed in Denmark since 2000, ALL patients diagnosed since 2005, and MDS patients diagnosed since 2010. The coverage of leukemia patients exceeds 99%, and the coverage of MDS patients is currently 90%. MAIN VARIABLES AND DESCRIPTIVE DATA: Approximately, 250 AML patients, 25 ALL patients, and 230 MDS patients are registered in the DNLR every year. In January 2015, the registry included detailed patient characteristics, disease characteristics, treatment characteristics, and outcome data on more than 3,500 AML, 300 ALL, and 1,100 MDS patients. Many of the included prognostic variables have been found to be of high quality including positive predictive values and completeness exceeding 90%. These variables have been used in prognostic observational studies in the last few years. To ensure this high coverage, completeness, and quality of data, linkage to the Danish Civil Registration System and the Danish National Registry of Patients, and several programmed data entry checks are used. CONCLUSION: The completeness and positive predictive values of the leukemia data have been found to be high. In recent years, the DNLR has shown to be an important high-quality resource for clinical prognostic research
    corecore