331 research outputs found

    Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon

    Get PDF
    Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of oxygen- and carbon-related defects in electron-irradiated Czochralski silicon. The results verify previous reports that Sn doping reduces the formation of the VO defect and suppresses its conversion to the VO2 defect. Within experimental accuracy, a small delay in the growth of the VO2 defect is observed. Regarding carbon-related defects, it is determined that Sn doping leads to a reduction in the formation of the CiOi, CiCs, and CiOi(SiI) defects although an increase in their thermal stability is observed. The impact of strain induced in the lattice by the larger tin substitutional atoms, as well as their association with intrinsic defects and carbon impurities, can be considered as an explanation to account for the above observations. The density functional theory calculations are used to study the interaction of tin with lattice vacancies and oxygen- and carbon-related clusters. Both experimental and theoretical results demonstrate that tin co-doping is an efficient defect engineering strategy to suppress detrimental effects because of the presence of oxygen- and carbon-related defect clusters in devices

    The CiCs(SiI)n defect in silicon from a density functional theory perspective

    Get PDF
    Carbon is an important defect in silicon (Si) as it can interact with intrinsic point defects and affect the operation of devices. In heavily irradiated Si containing carbon the initially produced carbon interstitial - carbon substitutional (CiCs) defect can associate with self-interstitials (SiI’s) to form, in the course of irradiation, the CiCs(SiI) defect and further to form larger complexes namely CiCs(SiI)n defects by the sequential trapping of self-interstitials defects. In the present study, we use density functional theory to clarify the structure and energetics of the CiCs(SiI)n defects. Here we report that the lowest energy CiCs(SiI) and CiCs(SiI)2 defects are strongly bound with -2.77 eV and -5.30 eV, respectively

    Scenarios about the long-time damage of silicon as material and detectors operating beyond LHC collider conditions

    Full text link
    For the new hadron collider LHC and some of its updates in luminosity and energy, as SLHC and VLHC, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation in the bulk of the silicon as material and for silicon detectors, in continuous radiation field, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame a phenomenological model developed previously by the authors. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation.Comment: submitted to Physica Scripta Work in the frame of CERN RD-50 Collaboratio

    Carbon related defects in irradiated silicon revisited

    Get PDF
    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects C(i)(Si(I)), C(i)O(i), C(i)C(s), and C(i)O(i)(Si(I)) with respect to the Fermi energy for all possible charge states. The C(i)(Si(I))(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the C(i)O(i)(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the C(i)C(s) pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the C(i)O(i)(Si(I)) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies
    • …
    corecore