9,592 research outputs found
Modeling Solar Lyman Alpha Irradiance
Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha
Fermi gas in harmonic oscillator potentials
Assuming the validity of grand canonical statistics, we study the properties
of a spin-polarized Fermi gas in harmonic traps. Universal forms of Fermi
temperature , internal energy and the specific heat per particle of
the trapped Fermi gas are calculated as a {\it function} of particle number,
and the results compared with those of infinite number particles.Comment: 8 pages, 1 figure, LATE
Vitamin K catabolite inhibition of ovariectomy-induced bone loss: Structure–activity relationship considerations
The potential benefit of vitamin K as a therapeutic in osteoporosis is controversial and the vitamin K regimen being used clinically (45 mg/day) employs doses that are many times higher than required to ensure maximal gamma‐carboxylation of the vitamin K‐dependent bone proteins. We therefore tested the hypothesis that vitamin K catabolites, 5‐carbon (CAN5C) and 7‐carbon carboxylic acid (CAN7C) aliphatic side‐chain derivatives of the naphthoquinone moiety exert an osteotrophic role consistent with the treatment of osteoporosis
Determining the Quark Mixing Matrix From CP-Violating Asymmetries
If the Standard Model explanation of CP violation is correct, then
measurements of CP-violating asymmetries in meson decays can in principle
determine the entire quark mixing matrix.Comment: 8 pages (plain TeX), 1 figure (postscript file appended), DAPNIA/SPP
94-06, NSF-PT-94-2, UdeM-LPN-TH-94-18
Exploring CP Violation with B_d -> D K_s Decays
We (re)examine CP violation in the decays B_d -> D K_s, where D represents
D^0, D(bar), or one of their excited states. The quantity can be extracted from the time-dependent rates for and , where the decays to
. If one considers a non-CP-eigenstate hadronic final state to
which both D(bar) and D^0 can decay (e.g. ), then one can obtain two
of the angles of the unitarity triangle from measurements of the time-dependent
rates for and .
There are no penguin contributions to these decays, so all measurements are
theoretically clean.Comment: 15 pages, LaTeX, no figure
Adolescents care but don't feel responsible for farm animal welfare
Adolescents are the next generation of consumers with the potential to raise standards of farm animal welfare—to theirsatisfaction—if their preferences and concerns are translated into accurate market drivers and signals. There are no published data about adolescent views of farm animal welfare to allow meaningful design, implementation, and evaluation of educational strategies to improve consideration of—and behavior toward—farm animals. Knowledge of farm animal welfare, as well as beliefs and attitudes about farm animal welfare and behavioral intention relevant to it were determined in a sample of ukadolescents, using a survey incorporating an extended version of the theory of planned behavior and novel assessment tools. Our results indicate that adolescents have only a limited knowledge of welfare problems for farm animals and welfare-relevant product labels. Intentions to identify welfare standards for the animals from whom their food was derived were weak. Although they cared about farm animal welfare and agreed with fundamental principles—for example, the provision of space and the absence of pain and suffering—like adults they held limited belief in the power and responsibility that they possess through their choices as consumers; responsibility was often shifted to others, such as the government and farmers
ANOMALOUS GAUGE BOSON INTERACTIONS
We discuss the direct measurement of the trilinear vector boson couplings in
present and future collider experiments. The major goals of such experiments
will be the confirmation of the Standard Model (SM) predictions and the search
for signals of new physics. We review our current theoretical understanding of
anomalous trilinear gauge boson self-interactions. If the energy scale of the
new physics is TeV, these low energy anomalous couplings are expected
to be no larger than . Constraints from high precision
measurements at LEP and low energy charged and neutral current processes are
critically reviewed.Comment: 53 pages with 17 embedded figures, LaTeX, uses axodraw.sty, figures
available on request. The complete paper, is available at
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z or
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z Summary
of the DPF Working Subgroup on Anomalous Gauge Boson Interactions of the DPF
Long Range Planning Stud
Fluid Mechanical and Electrical Fluctuation Forces in Colloids
Fluctuations in fluid velocity and fluctuations in electric fields may both
give rise to forces acting on small particles in colloidal suspensions. Such
forces in part determine the thermodynamic stability of the colloid. At the
classical statistical thermodynamic level, the fluid velocity and electric
field contributions to the forces are comparable in magnitude. When quantum
fluctuation effects are taken into account, the electric fluctuation induced
van der Waals forces dominate those induced by purely fluid mechanical motions.
The physical principles are applied in detail for the case of colloidal
particle attraction to the walls of the suspension container and more briefly
for the case of forces between colloidal particles.Comment: ReVTeX format, one *.eps figur
Direct measurement of quantum phase gradients in superfluid 4He flow
We report a new kind of experiment in which we generate a known superfluid
velocity in a straight tube and directly determine the phase difference across
the tube's ends using a superfluid matter wave interferometer. By so doing, we
quantitatively verify the relation between the superfluid velocity and the
phase gradient of the condensate macroscopic wave function. Within the
systematic error of the measurement (~10%) we find v_s=(hbar/m_4)*(grad phi)
Physisorption of Nucleobases on Graphene
We report the results of our first-principles investigation on the
interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine
(T), and uracil (U) with graphene, carried out within the density functional
theory framework, with additional calculations utilizing Hartree--Fock plus
second-order Moeller-Plesset perturbation theory. The calculated binding energy
of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the
equilibrium configuration being very similar for all five of them. Our results
clearly demonstrate that the nucleobases exhibit significantly different
interaction strengths when physisorbed on graphene. The stabilizing factor in
the interaction between the base molecule and graphene sheet is dominated by
the molecular polarizability that allows a weakly attractive dispersion force
to be induced between them. The present study represents a significant step
towards a first-principles understanding of how the base sequence of DNA can
affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure
- …