73 research outputs found
Acute Myeloid Leukemia
Acute myeloid leukemia (AML) is the most common type of leukemia. The Cancer Genome Atlas Research Network has demonstrated the increasing genomic complexity of acute myeloid leukemia (AML). In addition, the network has facilitated our understanding of the molecular events leading to this deadly form of malignancy for which the prognosis has not improved over past decades. AML is a highly heterogeneous disease, and cytogenetics and molecular analysis of the various chromosome aberrations including deletions, duplications, aneuploidy, balanced reciprocal translocations and fusion of transcription factor genes and tyrosine kinases has led to better understanding and identification of subgroups of AML with different prognoses. Furthermore, molecular classification based on mRNA expression profiling has facilitated identification of novel subclasses and defined high-, poor-risk AML based on specific molecular signatures. However, despite increased understanding of AML genetics, the outcome for AML patients whose number is likely to rise as the population ages, has not changed significantly. Until it does, further investigation of the genomic complexity of the disease and advances in drug development are needed. In this review, leading AML clinicians and research investigators provide an up-to-date understanding of the molecular biology of the disease addressing advances in diagnosis, classification, prognostication and therapeutic strategies that may have significant promise and impact on overall patient survival
Microrna isoforms contribution to melanoma pathogenesis
Cutaneous melanoma (CM) is the most lethal tumor among skin cancers, and its incidence is constantly increasing. A deeper understanding of the molecular processes guiding melanoma pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs play a key role in melanoma biology. Recently, next generation sequencing (NGS) experiments, designed to assess smallāRNA expression, revealed the existence of microRNA variants with different length and sequence. These microRNA isoforms are known as isomiRs and provide an additional layer to the complex nonācoding RNA world. Here, we collected data from NGS experiments to provide a comprehensive characterization of miRNA and isomiR dysregulation in benign nevi (BN) and early-stage melanomas. We observed that melanoma and BN express different and specific isomiRs and have a different isomiR abundance distribution. Moreover, isomiRs from the same microRNA can have opposite expression trends between groups. Using The Cancer Genome Atlas (TCGA) dataset of skin cancers, we analyzed isomiR expression in primary melanoma and melanoma metastasis and tested their association with NF1, BRAF and NRAS mutations. IsomiRs differentially expressed were identified and catalogued with reference to the canonical form. The reported nonārandom dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies
Clinical exome performance for reporting secondary genetic findings.
BACKGROUND
:
Reporting clinically actionable incidental
genetic findings in the course of clinical exome testing is
recommended by the American College of Medical Genet-
ics and Genomics (ACMG). However, the performance of
clinical exome methods for reporting small subsets of genes
has not been previously reported.
METHODS
:
In this study, 57 exome data sets performed as
clinical (n
!
12) or research (n
!
45) tests were retrospec-
tively analyzed. Exome sequencing data was examined for
adequacy in the detection of potentially pathogenic variant
locations in the 56 genes described in the ACMG incidental
findings recommendation. All exons of the 56 genes were
examined for adequacy of sequencing coverage. In addition,
nucleotide positions annotated in HGMD (Human Gene
Mutation Database) were examined.
RESULTS
:
The 56 ACMG genes have 18336 nucleotide
variants annotated in HGMD. None of the 57 exome
data sets possessed a HGMD variant. The clinical exome
test had inadequate coverage for
"
50% of HGMD vari-
ant locations in 7 genes. Six exons from 6 different genes
had consistent failure across all 3 test methods; these
exons had high GC content (76%ā84%).
CONCLUSIONS
:
The use of clinical exome sequencing
for the interpretation and reporting of subsets of genes
requires recognition of the substantial possibility of
inadequate depth and breadth of sequencing coverage
at clinically relevant locations. Inadequate depth of
coverage may contribute to false-negative clinical ex-
ome results
The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome.
BACKGROUND: For the anucleate platelet it has been unclear how well platelet transcriptomes correlate among different donors or across different RNA profiling platforms, and what the transcriptomes\u27 relationship is with the platelet proteome. We profiled the platelet transcriptome of 10 healthy young males (5 white and 5 black) with no notable clinical history using RNA sequencing and by Affymetrix microarray.
RESULTS: We found that the abundance of platelet mRNA transcripts was highly correlated across the 10 individuals, independently of race and of the employed technology. Our RNA-seq data showed that these high inter-individual correlations extend beyond mRNAs to several categories of non-coding RNAs. Pseudogenes represented a notable exception by exhibiting a difference in expression by race. Comparison of our mRNA signatures to a publicly available quantitative platelet proteome showed that most (87.5%) identified platelet proteins had a detectable corresponding mRNA. However, a high number of mRNAs that were present in the transcriptomes of all 10 individuals had no representation in the proteome. Spearman correlations of the relative abundances for those genes represented by both an mRNA and a protein showed a weak (~0.3) connection. Further analysis of the overlapping and non-overlapping platelet mRNAs and proteins identified gene groups corresponding to distinct cellular processes.
CONCLUSIONS: The results of our analyses provide novel insights for platelet biology, show only a weak connection between the platelet transcriptome and proteome, and indicate that it is feasible to assemble a platelet mRNA-ome that can serve as a reference for future platelet transcriptomic studies of human health and disease.
REVIEWED BY: This article was reviewed by Dr Mikhail Dozmorov (nominated by Dr Yuri Gusev), Dr Neil Smalheiser and Dr Eugene Koonin
Posttranscriptional regulation of PARG mRNA by HuR facilitates DNA repair and resistance to PARP inhibitors
The majority of pancreatic ductal adenocarcinomas (PDAC) rely on the mRNA stability factor HuR (ELAV-L1) to drive cancer growth and progression. Here, we show that CRISPR-Cas9āmediated silencing of the HuR locus increases the relative sensitivity of PDAC cells to PARP inhibitors (PARPi). PDAC cells treated with PARPi stimulated translocation of HuR from the nucleus to the cytoplasm, specifically promoting stabilization of a new target, poly (ADP-ribose) glycohydrolase (PARG) mRNA, by binding a unique sequence embedded in its 30 untranslated region. HuR-dependent upregulation of PARG expression facilitated DNA repair via hydrolysis of polyADP-ribose on related repair proteins. Accordingly, strategies to inhibit HuR directly promoted DNA damage accumulation, inefficient PAR removal, and persistent PARP-1 residency on chromatin (PARP-1 trapping). Immunoprecipitation assays demonstrated that the PARP-1 protein binds and posttranslationally modifies HuR in PARPi-treated PDAC cells. In a mouse xenograft model of human PDAC, PARPi monotherapy combined with targeted silencing of HuR significantly reduced tumor growth compared with PARPi therapy alone. Our results highlight the HuRāPARG axis as an opportunity to enhance PARPi-based therapies. Ā©2017 AACR
The complex transcriptional landscape of the anucleate human platelet.
BACKGROUND: Human blood platelets are essential to maintaining normal hemostasis, and platelet dysfunction often causes bleeding or thrombosis. Estimates of genome-wide platelet RNA expression using microarrays have provided insights to the platelet transcriptome but were limited by the number of known transcripts. The goal of this effort was to deep-sequence RNA from leukocyte-depleted platelets to capture the complex profile of all expressed transcripts.
RESULTS: From each of four healthy individuals we generated long RNA (ā„40 nucleotides) profiles from total and ribosomal-RNA depleted RNA preparations, as well as short RNA (\u3c40 \u3enucleotides) profiles. Analysis of ~1 billion reads revealed that coding and non-coding platelet transcripts span a very wide dynamic range (ā„16 PCR cycles beyond Ī²-actin), a result we validated through qRT-PCR on many dozens of platelet messenger RNAs. Surprisingly, ribosomal-RNA depletion significantly and adversely affected estimates of the relative abundance of transcripts. Of the known protein-coding loci, ~9,500 are present in human platelets. We observed a strong correlation between mRNAs identified by RNA-seq and microarray for well-expressed mRNAs, but RNASeq identified many more transcripts of lower abundance and permitted discovery of novel transcripts.
CONCLUSIONS: Our analyses revealed diverse classes of non-coding RNAs, including: pervasive antisense transcripts to protein-coding loci; numerous, previously unreported and abundant microRNAs; retrotransposons; and thousands of novel un-annotated long and short intronic transcripts, an intriguing finding considering the anucleate nature of platelets. The data are available through a local mirror of the UCSC genome browser and can be accessed at: http://cm.jefferson.edu/platelets_2012/
Role of BMP, FGF, Calcium Signaling, and Zic Proteins in Vertebrate Neuroectodermal Differentiation
More than a decade has passed since Zic family zinc finger proteins were discovered to be transcription factors controlling neuroectodermal differentiation (neural induction) in Xenopus laevis embryos. Although BMP-signal blocking has been shown to be a major upregulator of Zic genes in neuroectodermal differentiation, recent studies have revealed that FGF signaling and intracellular calcium elevation are also involved in regulating the expression of Zic genes. Different regulatory mechanisms have been found for the Zic1 and Zic3 genes, raising the possibility that functional synergism between them partly accounts for the integration of BMP-signal blocking and FGF signaling in neuroectodermal differentiation. Furthermore, mammalian Zic1 and Zic3 have been found to be neural-cell-fate-inducing and pluripotency-maintaining factors, respectively, leading us to the intriguing question of whether the mechanism underlying amphibian neuroectodermal differentiation is applicable to mammals. Comprehensive understanding of the Zic family genes is therefore essential for the study of the neuroectodermal differentiation and stem cell biology
High-throughput profiling of caenorhabditis elegans starvation-responsive microRNAs
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans
- ā¦