6 research outputs found

    Comparison of the mineralogy and microstructure of EAF stainless steel slags with reference to the cooling treatment

    Get PDF
    TIn the present study the differences in the mineralogical composition and microstructure of various types of EAF stainless steel (EAF S) slag with regard to the cooling treatment, the operation practice in an EAF (electric arc furnace) and environmental ageing reactions were evaluated. It was shown that the mineralogy of the investigated EAF S slags varied from one slag to another, depending on the quality of the produced stainless steel. The production process of the treated steel also has a strong influence on the mineralogy of the slags. The conditions during water cooling treatment were not sufficient to prevent the crystallization of primary mineral phases, which occurs predominantly in air-cooled EAF S slags, probably due to the high basicity of the investigated slags. However, the water cooling treatment of hot slag leads to the absence of γ-CaSiO 4 and the formation of secondary mineral phases predominantly calcite, portlandite, ettringite, calcium aluminate hydrate and calcium silicate hydrate. It has been shown that during the environmental ageing test (down-flow column test) secondary mineral phases were formed, which were the same as those formed during the water cooling treatment

    Use of steel slag for the synthesis of belite-sulfoaluminate clinker

    Get PDF
    Belite-sulfoaluminate (BCSA) cements are low-carbon mineral binders, which require low energy consumption and allow the incorporation of various secondary raw materials in the clinker raw meal. In this study two types of unprocessed steel slags, coming from stainless steel production, were incorporated in the BCSA clinkers. The clinker phase composition, clinker reactivity, and the compressive strength of the cement were studied to evaluate the possible use of the slag in BCSA clinkers. The cement clinkers were synthesized by using natural raw materials, white titanogypsum, mill scale, as well as two different steel slags: (i) EAF S slag, which is a by-product of melting the recycled steel scrap in an electric arc furnace, and (ii) la dle slag as a by-product of the processes of secondary metallurgy, in various quantities. Raw mixtures with two different targeted phase compositions varying in belite, calcium sulfoaluminate and ferrite phases were sintered at 1250 °C. Clinker phases were determined by Rietveld quantitative phase analysis, while their distribution, morphology and incorporation of foreign ions in the phases were studied by SEM/EDS analysis. The clinker reactivity was determined by isothermal calorimetry. BCSA cements were prepared by adding titanogypsum. The compressive strength of the cement pastes was determined after 7 days of hydration. The presence of a predicted major clinker phases was confirmed by Rietveld analysis, however periclase was also detected. Microscopy revealed subhedral grains of belite and euhedral grains of calcium sulfoaluminate phases, while ferrite occurred as an interstitial phase. The results showed differences in the microstructure and reactivity of the clinker and cement, which can be attributed to varying amounts of ettringite due to different slag type

    Manual for use of Al-containing residues in low-carbon mineral binders

    Get PDF
    Our society can no longer be imagined without its modern infrastructure, which is inevitably based on the use of various mineral and metallic materials and requires a high energy consumption. Parallel to the production of materials, as well as the production of electricity, huge amounts of various industrial and mining residues (waste/by-product) are generated and many of them are sent to landfill. The European Union (EU) aims to increase resource efficiency and the supply of ”secondary raw materials“ through recycling [1], inventory of waste from extractive industries [2], and waste prevention, waste re-use and material recycling [3]. Much of the industrial and mining waste is enriched with aluminium (Al) and therefore has a potential to replace natural sources of Al in mineral binders with a high Al demand. However, the use of industrial residue in mineral binders requires an extensive knowledge of its chemical composition, including potential hazardous components (e.g. mercury), mineral composition, organic content, radioactivity and physical properties (moisture content, density, etc.). This manual addresses the legislative aspects, governing the use of secondary raw materials in construction products, description of the most common Al-containing industrial and mining residue (bauxite deposits, red mud, ferrous slag, ash and some other by products from industry), potentiality for their reutilisation and its economic aspects, potential requirements/barriers for the use of secondary raw materials in the cement industry and a description of belite-sulfoaluminate cements, which are a promising solution for implementing the circular economy through the use of large amounts of landfilled Al-rich industrial residue and mining waste cement clinker raw mixture. This manual was prepared by partners of the RIS-ALiCE project. It provides a popular content, which targets relevant stakeholders as well as the wider society. Moreover, it offers education material for undergraduate, master and PhD students.Other links: [http://www.zag.si/dl/manual-alice.pdf

    The Incorporation of steel slag into belite-sulfoaluminate cement clinkers

    Get PDF
    The potential use of steel slag from treated steel slag in belite-sulfoaluminate cements was investigated in this study. Cement clinkers with two phase compositions were synthesized, allowing the incorporation of different amounts of steel slag. The phase composition and microstructure of cement clinkers at three different sintering temperatures were studied by X-ray powder diffraction and the Rietveld method, as well as scanning electron microscopy with energy dispersive spectrometry. The results showed that the targeted phase composition of clinkers was achieved at a sintering temperature of 1250%C. However, a higher amount of perovskite instead of ferrite was detected in the clinker with a higher content of Ti-bearing bauxite. Apart from the main phases, such asbelite, calcium sulfoaluminate, and ferrite, several minor phases were identified, including mayenite, perovskite, periclase, and alkali sulfates. In both clinker mixtures, a higher content of MgO in the steelslags resulted in the formation of periclase. Furthermore, the hydration kinetics and compressive strength at 7 and 28 days were studied in two cements prepared from clinkers sintered at 1250%C. As evidenced by the results of isothermal calorimetry, the hydration kinetics were also influenced by the minor clinker phases. Cement with a higher content of calcium sulfoaluminate phase developed a higher compressive strength

    The Incorporation of Steel Slag into Belite-Sulfoaluminate Cement Clinkers

    No full text
    The potential use of steel slag from treated steel slag in belite-sulfoaluminate cements was investigated in this study. Cement clinkers with two phase compositions were synthesized, allowing the incorporation of different amounts of steel slag. The phase composition and microstructure of cement clinkers at three different sintering temperatures were studied by X-ray powder diffraction and the Rietveld method, as well as scanning electron microscopy with energy dispersive spectrometry. The results showed that the targeted phase composition of clinkers was achieved at a sintering temperature of 1250 °C. However, a higher amount of perovskite instead of ferrite was detected in the clinker with a higher content of Ti-bearing bauxite. Apart from the main phases, such as belite, calcium sulfoaluminate, and ferrite, several minor phases were identified, including mayenite, perovskite, periclase, and alkali sulfates. In both clinker mixtures, a higher content of MgO in the steel slags resulted in the formation of periclase. Furthermore, the hydration kinetics and compressive strength at 7 and 28 days were studied in two cements prepared from clinkers sintered at 1250 °C. As evidenced by the results of isothermal calorimetry, the hydration kinetics were also influenced by the minor clinker phases. Cement with a higher content of calcium sulfoaluminate phase developed a higher compressive strength

    Leaching and geochemical modelling of an electric arc furnace (EAF) and ladle slag heap

    Get PDF
    Old metallurgical dumps across Europe represent a loss of valuable land and a potential threat to the environment, especially to groundwater (GW). The Javornik electric arc furnace (EAF) and ladle slag heap, situated in Slovenia, was investigated in this study. The environmental impact of the slag heap was evaluated by combining leaching characterization tests of landfill samples and geochemical modelling. It was shown that throughout the landfill the same minerals and sorptive phases control the leaching of elements of potential concern, despite variations in chemical composi- tion. Although carbonation of the disposed steel slags occurred (molar ratio CO3_3/(Ca+Mg) = 0.53) relative to fresh slag, it had a limited effect on the leaching behaviour of elements of potential concern. The leaching from the slag heaps had also a limited effect on the quality of the GW. A site-specific case, however, was that leachates from the slag heap were strongly diluted, since a rapid flow of GW fed from the nearby Sava River was observed in the landfill area. The sampling and testing approach applied provides a basis for assessing the long-term impact of release and is a good starting point for evaluating future management options, including beneficial uses for this type of slag
    corecore