40 research outputs found

    Résultats de la campagne des 1000 points

    Get PDF

    K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes

    Get PDF
    The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society

    K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes

    No full text
    The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society

    K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes

    Get PDF
    The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society

    Recent sedimentary processes along the Makran trench (Makran active margin, off Pakistan)

    No full text
    Nicolas Mouchot, Lies Loncke, Geoffroy Mahieux, Julien Bourget, Siegfried Lallemant, Nadine Ellouz-Zimmermann and Pascale Leturmyhttp://www.elsevier.com/wps/find/journaldescription.cws_home/503350/description#descriptio
    corecore