40 research outputs found
K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes
The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society
K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes
The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society
K2 Y F5 crystal symmetry determined by using rare-earth ions as paramagnetic probes
The electron paramagnetic resonance angular dependences for Gd3+ and Ce3+ centers in K2 Y F5 crystals show that the Y3+ site has monoclinic Ch symmetry in these crystals. This site symmetry is compatible with the crystal structure having the Pnam space group. From the zero-field splitting parameters of the Gd3+ center, it is deduced that the symmetry of the Y3+ sites is close to trigonal around the b axis, distorted by the overall orthorhombic symmetry of the crystal structure. This information is required for the identification of radiation-induced centers in this material, which shows favorable properties for applications as thermoluminescent dosimeter. © 2007 The American Physical Society
Recent sedimentary processes along the Makran trench (Makran active margin, off Pakistan)
Nicolas Mouchot, Lies Loncke, Geoffroy Mahieux, Julien Bourget, Siegfried Lallemant, Nadine Ellouz-Zimmermann and Pascale Leturmyhttp://www.elsevier.com/wps/find/journaldescription.cws_home/503350/description#descriptio