6 research outputs found

    Safety and efficacy of ceftolozane/tazobactam plus metronidazole versus meropenem from a phase 2, randomized clinical trial in pediatric participants with complicated intra-abdominal infection

    Get PDF
    BACKGROUND: Ceftolozane/tazobactam, a cephalosporin-β-lactamase inhibitor combination, is approved for the treatment of complicated urinary tract infections and complicated intra-abdominal infections (cIAI). The safety and efficacy of ceftolozane/tazobactam in pediatric participants with cIAI were assessed. METHODS: This phase 2 study (NCT03217136) randomized participants to either ceftolozane/tazobactam+metronidazole or meropenem for treatment of cIAI in pediatric participants (\u3c18 years). The primary objective was to assess the safety and tolerability of intravenous ceftolozane/tazobactam+metronidazole. Clinical cure at end of treatment (EOT) and test of cure (TOC) visits were secondary end points. RESULTS: The modified intent-to-treat (MITT) population included 91 participants (ceftolozane/tazobactam+metronidazole, n = 70; meropenem, n = 21). Complicated appendicitis was the most common diagnosis (93.4%); Escherichia coli was the most common pathogen (65.9%). Adverse events (AEs) occurred in 80.0% and 61.9% of participants receiving ceftolozane/tazobactam+metronidazole and meropenem, drug-related AEs occurred in 18.6% and 14.3% and serious AEs occurred in 11.4% and 0% of participants receiving ceftolozane/tazobactam+metronidazole and meropenem, respectively. No drug-related serious AEs or discontinuations due to drug-related AEs occurred. Rates of the clinical cure for ceftolozane/tazobactam+metronidazole and meropenem at EOT were 80.0% and 95.2% (difference: -14.3; 95% confidence interval: -26.67 to 4.93) and at TOC were 80.0% and 100.0% (difference: -19.1; 95% confidence interval: -30.18 to -2.89), respectively; 6 of the 14 clinical failures for ceftolozane/tazobactam+metronidazole at TOC were indeterminate responses imputed as failures per protocol. CONCLUSION: Ceftolozane/tazobactam+metronidazole was well tolerated in pediatric participants with cIAI and had a safety profile similar to the established safety profile in adults. In this descriptive efficacy analysis, ceftolozane/tazobactam+metronidazole appeared efficacious

    Disruption of Poly(ADP-Ribose) Homeostasis Affects Spermiogenesis and Sperm Chromatin Integrity in Mice1

    No full text
    The major function of sperm is the delivery of the paternal genome to the metaphase II oocyte, ensuring transmission of the genetic information to the next generation. For successful fertilization and healthy offspring, sperm DNA must be protected from exogenous insults. This is achieved by packaging the sperm DNA into a condensed protamine-bound form, preceded by the precisely orchestrated removal of histones and intermittent insertion and removal of transition proteins. This remodeling process requires relaxation of supercoiled DNA by transient formation of physiological strand breaks that spermatids, being haploid, cannot repair by homologous recombination. In somatic cells, the presence of DNA strand breaks rapidly induces the formation of poly(ADP-ribose) by nuclear poly(ADP-ribose) polymerases, which in turn facilitates DNA strand break signaling and assembly of DNA repair complexes. We reported earlier that chromatin remodeling steps during spermiogenesis trigger poly(ADP-ribose) (PAR) formation. Here, we show that knockout mice deficient in PARP1, PARG (110-kDa isoform), or both display morphological and functional sperm abnormalities that are dependent on the individual genotypes, including residual DNA strand breaks associated with varying degrees of subfertility. The data presented highlight the importance of PAR metabolism, particularly PARG function, as a prerequisite of proper sperm chromatin quality
    corecore