232 research outputs found

    Considerazioni biologiche sui voli spaziali eseguiti fino ad oggi

    Get PDF
    L'A. espone dapprima i risultati di interesse biologicoconseguiti nei primi voli spaziali, suborbitali ed orbitali, realizzati dai sovietici,dagli americani e dai francesi, con l'impiego di animali da esperimentodi specie diverse. Sul presupposto di tali ricerche venivano lanciati, per voliorbitali, i sovietici Gagarin e Titov.Nei due astronauti le modificazioni delle grandezze circolatorie durantela fase di ipergravità non differivano dai dati rilevati in centrifuga. In assenzadi gravità le variazioni cardiache e respiratorie furono quasi nulle, mentrenon si rilevarono disturbi nei movimenti e nella coordinazione muscolare.Solo Titov, per qualche istante del volo, presentò vertigini e nausea cheinsorgevano con i movimenti della testa.Gli Stati Uniti eseguivano i loro primi voli spaziali umani suborbitali,con i lanci di Shepard e Grissom.Dopo alcuni voli orbitali sperimentali realizzavano il loro primo voloorbitale umano con il lancio del tenente colonnello Glenn. I dati biologiciteletrasmessi fecero rilevare un comportamento dell'apparato cardiovascolare,nelle fasi di iper e di zero gravità, che rientrava nelle previsioni. Le funzionisensoriali non presentarono alterazioni, ove si eccettui una riduzione dellavisione crepuscolare, né si ebbero, in condizioni di zero-gravità, disturbilabirintici, che pure l'astronauta cercò di provocare con movimenti dellatesta. L'alimentazione, eseguita con cibi appositamente preparati, nonpresentò difficoltà

    A low-cost internal standard loader for solid-phase sorbing tools

    Get PDF
    Solid-phase sorption is widely used for the analysis of gaseous specimens as it allows at the same time to preconcentrate target analytes and store samples for relatively long periods. The addition of internal standards (ISs) in the analytical workflow can greatly reduce the variability of the analyses and improve the reliability of the protocols. In this work, we describe the development and testing of a portable system for the reliable production of gaseous mixture of( 8)D-Toluene in a 1L Silonite canister as well as its reproducible loading into solid-phase sorbing tools as ISs. The portable system was tested using needle trap microextraction, solid-phase extraction, and thin-film microextraction techniques commonly employed for the analysis of gaseous samples. Even though our specific interest is in breath analysis, the system can also be used for the collection of any kind of gaseous specimen. A microcontroller allows the fine control of the sampling flow by a digital mass flow controller. Flow rate and sample volume could be set either through a rotary encoder mounted onto the control board or through a dedicated android app. The variability of the airflow is in the range 5-200 ml min(-1) and it is lower than 1%, whereas the variability of the IS (D-8-Toluene) concentration dispensed over time by the loader measured by selected-ion flow-tube mass spectrometry (MS) is <3%. This combination resulted in intra- and inter-day precision of the amount loaded in the sorbent tools lower than 15%. No carry-over was detected in the loader after the delivery of the D-8-Toluene measured by gas chromatography-MS. The 8D-Toluene concentration in the canister was stable for up to three weeks at room temperature

    Combining electrodermal activity analysis and dynamic causal modeling to investigate the visual-odor multimodal integration during face perception

    Get PDF
    Objective. This study presents a novel methodological approach for incorporating information related to the peripheral sympathetic response into the investigation of neural dynamics. Particularly, we explore how hedonic contextual olfactory stimuli influence the processing of neutral faces in terms of sympathetic response, event-related potentials and effective connectivity analysis. The objective is to investigate how the emotional valence of odors influences the cortical connectivity underlying face processing and the role of face-induced sympathetic arousal in this visual-olfactory multimodal integration. Approach. To this aim, we combine electrodermal activity (EDA) analysis and dynamic causal modeling to examine changes in cortico-cortical interactions. Results. The results reveal that stimuli arising sympathetic EDA responses are associated with a more negative N170 amplitude, which may be a marker of heightened arousal in response to faces. Hedonic odors, on the other hand, lead to a more negative N1 component and a reduced the vertex positive potential when they are unpleasant or pleasant. Concerning connectivity, unpleasant odors strengthen the forward connection from the inferior temporal gyrus (ITG) to the middle temporal gyrus, which is involved in processing changeable facial features. Conversely, the occurrence of sympathetic responses after a stimulus is correlated with an inhibition of this same connection and an enhancement of the backward connection from ITG to the fusiform face gyrus. Significance. These findings suggest that unpleasant odors may enhance the interpretation of emotional expressions and mental states, while faces capable of eliciting sympathetic arousal prioritize identity processing

    Determination of carbonyl compounds in exhaled breath by on-sorbent derivatization coupled with thermal desorption and gas chromatography-tandem mass spectrometry

    Get PDF
    A reliable method for the determination of carbonyl compounds in exhaled breath based on on-sorbent derivatization coupled with thermal desorption and gas chromatography-tandem mass spectrometry is described. The analytical performances were optimized for a mixture of C2-C9 aldehydes and C3-C9 ketones, particularly interesting for clinical applications, by using an internal standard and applying a 2^3 full factorial design. A volume of sample (250 ml) was loaded at 50 ml min-1 into a Tenax GR sorbent tube containing 130 nmol of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride. All compounds showed a limit of detection lower than 200 pptv. The yield of the derivatization procedure was normalized by adding to the sample a known amount of 6D-acetone as an internal standard. This allowed halving the relative standard deviation to 10% and 15% for the mono-and di-carbonyl compounds, respectively, thus improving reliability. The optimized method was applied to the determination of carbonyl compounds in 12 breath samples collected from four patients suffering from heart failure during hospitalization

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Type-specific inflammatory responses of vascular cells activated by interaction with virgin and aged microplastics

    Get PDF
    Microplastics (MPs) are recognized as a major environmental problem due to their ubiquitous presence in ecosystems and bioaccumulation in food chains. Not only humans are continuously exposed to these pollutants through ingestion and inhalation, but recent findings suggest they may trigger vascular inflammation and potentially worsen the clinical conditions of cardiovascular patients. Here we combine headspace analysis by needle trap microextraction-gas chromatography-mass spectrometry (HS-NTME-GC-MS) and biological assays to evaluate the effects of polystyrene, high- and low-density polyethylene MPs on phenotype, metabolic activity, and pro-inflammatory status of Vascular Smooth Muscle Cells (VSMCs) the most prominent cells in vascular walls. Virgin and artificially aged MPs (4 weeks at 40 °C and 750 W/m2 simulated solar irradiation) were comparatively tested at 1 mg/mL to simulate a realistic exposure scenario. Our results clearly show the activation of oxidative stress and inflammatory processes when VSMCs were cultured with aged polymers, with significant overexpression of IL-6 and TNF-α. In addition, volatile organic compounds (VOCs), including pentane, acrolein, propanal, and hexanal as the main components, were released by VSMCs into the headspace. Type-specific VOC response profiles were induced on vascular cells from different MPs

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard

    MS-based targeted profiling of oxylipins in COVID-19: A new insight into inflammation regulation

    Get PDF
    The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19

    Analysis of radiatively stable entanglement in a system of two dipole-interacting three-level atoms

    Get PDF
    We explore the possibilities of creating radiatively stable entangled states of two three-level dipole-interacting atoms in a Λ\Lambda configuration by means of laser biharmonic continuous driving or pulses. We propose three schemes for generation of entangled states which involve only the lower states of the Λ\Lambda system, not vulnerable to radiative decay. Two of them employ coherent dynamics to achieve entanglement in the system, whereas the third one uses optical pumping, i.e., an essentially incoherent process.Comment: Replaced with the final version; 14 pages, 6 figures; to appear in Phys. Rev. A, vol. 61 (2000
    • 

    corecore