8 research outputs found

    Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II Study Evaluating an Individualized Treatment Strategy for Metastatic Disease

    No full text
    The one-year and median overall survival (mOS) rates of advanced gastroesophageal adenocarcinomas (GEA) are ∼50% and <12 months, respectively. Baseline spatial and temporal molecular heterogeneity of targetable alterations may be a cause of failure of targeted/immunooncologic therapies. This heterogeneity, coupled with infrequent incidence of some biomarkers, has resulted in stalled therapeutic progress. We hypothesized that a personalized treatment strategy, applied at first diagnosis then serially over up to three treatment lines using monoclonal antibodies combined with optimally sequenced chemotherapy, could contend with these hurdles. This was tested using a novel clinical expansion-platform type II design with a survival primary endpoint. Of 68 patients by intention-to-treat, the one-year survival rate was 66% and mOS was 15.7 months, meeting the primary efficacy endpoint (one-sided P = 0.0024). First-line response rate (74%), disease control rate (99%), and median progression-free survival (8.2 months) were superior to historical controls. The PANGEA strategy led to improved outcomes warranting a larger randomized study. SIGNIFICANCE: This study highlights excellent outcomes achieved by individually optimizing chemotherapy, biomarker profiling, and matching of targeted therapies at baseline and over time for GEA. Testing a predefined treatment strategy resulted in improved outcomes versus historical controls. Therapeutic resistance observed in correlative analyses suggests that dual targeted inhibition may be beneficial.This article is highlighted in the In This Issue feature, p. 211

    Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma

    No full text
    Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential rea-son for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy. SIGNIFICANCE: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated

    Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma

    No full text
    Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential rea-son for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy. SIGNIFICANCE: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated
    corecore