257 research outputs found

    Absorption coefficient and non-equilibrium generalized Planck's law for improved hot carrier photoluminescence spectroscopy

    Get PDF
    International audienceThe generalized Planck's law describes the light emitted by a blackbody. In the past this law has been generalized to semiconductors. Whereas Planck's orginial formulation roots on a same temperature between the body and the emitted photon gas, the generalized expression for semiconductors has been used to describe electron-hole plasmas in non-equilibrium with the lattice. Here we show experimentally how to determine different electron and hole temperatures in non-equilibrium with the pho-ton gas. Since the absorption coefficient varies with the carrier density and is part of the generalize Planck's law, we particularly emphasize the importance of the absorption coefficient in the analysis of hot carrier photoluminescence spectra. Index Terms-hot carrier solar cells, hot carrier photolumines-cence, non-equilibrium generalized Planck's law, non-equilibrium electron and hole distribution

    De l'autre côté du miroir : la poésie de Ph. Jaccottet traduite en allemand /

    Get PDF

    Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    No full text
    International audienceWe investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Dl and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Dl are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs. This indicates a working condition beyond the classical Shockley-Queisser limit

    Electron spin quantum beats in positively charged quantum dots: nuclear field effects

    Full text link
    We have studied the electron spin coherence in an ensemble of positively charged InAs/GaAs quantum dots. In a transverse magnetic field, we show that two main contributions must be taken into account to explain the damping of the circular polarization oscillations. The first one is due to the nuclear field fluctuations from dot to dot experienced by the electron spin. The second one is due to the dispersion of the transverse electron Lande g-factor, due to the inherent inhomogeneity of the system, and leads to a field dependent contribution to the damping. We have developed a model taking into account both contributions, which is in good agreement with the experimental data. This enables us to extract the pure contribution to dephasing due to the nuclei.Comment: 10 pages, 6 figure

    Spin-dependent electron dynamics and recombination in GaAs(1-x)N(x) alloys at room temperature

    Full text link
    We report on both experimental and theoretical study of conduction-electron spin polarization dynamics achieved by pulsed optical pumping at room temperature in GaAs(1-x)N(x) alloys with a small nitrogen content (x = 2.1, 2.7, 3.4%). It is found that the photoluminescence circular polarization determined by the mean spin of free electrons reaches 40-45% and this giant value persists within 2 ns. Simultaneously, the total free-electron spin decays rapidly with the characteristic time ~150 ps. The results are explained by spin-dependent capture of free conduction electrons on deep paramagnetic centers resulting in dynamical polarization of bound electrons. We have developed a nonlinear theory of spin dynamics in the coupled system of spin-polarized free and localized carriers which describes the experimental dependencies, in particular, electron spin quantum beats observed in a transverse magnetic field.Comment: 5 pages, 4 figures, Submitted to JETP Letter

    Optically-pumped dilute nitride spin-VCSEL

    Get PDF
    We report the first room temperature optical spin-injection of a dilute nitride 1300 nm vertical-cavity surface-emitting laser (VCSEL) under continuous-wave optical pumping. We also present a novel experimental protocol for the investigation of optical spin-injection with a fiber setup. The experimental results indicate that the VCSEL polarization can be controlled by the pump polarization, and the measured behavior is in excellent agreement with theoretical predictions using the spin flip model. The ability to control the polarization of a long-wavelength VCSEL at room temperature emitting at the wavelength of 1.3 μm opens up a new exciting research avenue for novel uses in disparate fields of technology ranging from spintronics to optical telecommunication networks. © 2012 Optical Society of America

    Multijunction photovoltaics: integrating III–V semiconductor heterostructures on silicon

    No full text
    International audienceGallium arsenide phosphide nitride shows promise for developing highefficiency tandem solar cells on low-cost silicon substrate

    GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    No full text
    International audienceGaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1µm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1µm and 0.3µm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising

    Control of the Bright-Dark Exciton Splitting using Lamb Shift in a 2D Semiconductor

    Full text link
    We have investigated the exciton fine structure in atomically thin WSe2 -based van der Waals heterostructures where the density of optical modes at the location of the semiconductor monolayer can be tuned. The energy splitting Δ\Delta between the bright and dark exciton has been measured by photoluminescence spectroscopy. We demonstrate that Δ\Delta can be tuned by a few meV, as a result of a significant Lamb shift of the optically active exciton which arises from emission and absorption of virtual photons triggered by the vacuum fluctuations of the electromagnetic field. We also measured strong variations of the bright exciton radiative linewidth, as a result of the Purcell effect. All these experimental results illustrate the strong sensitivity of the excitons to local vacuum field. We found a very good agreement with a model that demonstrates the equivalence, for our system, of a classical electrodynamical transfer matrix formalism and quantum-electrodynamical approach. The bright-dark splitting control demonstrated here should apply to any semiconductor structures
    • …
    corecore