4,570 research outputs found

    Hund and pair-hopping signature in transport properties of degenerate nanoscale devices

    Full text link
    We investigate the signature of a complete Coulomb interaction in transport properties of double-orbital nanoscale devices. We analyze the specific effects of Hund exchange and pair hopping terms, calculating in particular stability diagrams. It turns out that a crude model, with partial Coulomb interaction, may lead to a misinterpretation of experiments. In addition, it is shown that spectral weight transfers induced by gate and bias voltages strongly influence charge current. The low temperature regime is also investigated, displaying inelastic cotunneling associated with the exchange term, as well as Kondo conductance enhancement.Comment: 5 pages, 4 figure

    Conditions for requiring nonlinear thermoelectric transport theory in nanodevices

    Full text link
    In this paper, we examine the conditions under which the nonlinear transport theory is inescapable, when a correlated quantum dot is symmetrically coupled to two leads submitted to temperature and voltage biases. By detailed numerical comparisons between nonlinear and linear currents, we show that the claimed nonlinear behavior in a temperature gradient for the electric current is not so genuine, and the linear theory made at the operating temperature Tˉ=(TH+TC)/2\bar{T}= (T_H+T_C)/2 is unexpectedly robust. This is demonstrated for the single impurity Anderson model, in different regimes: resonant tunneling, Coulomb blockade and Kondo regimes

    Fluctuations, correlations and the sign problem in QCD

    Full text link
    We study the distribution of the phase angle and the magnitude of the fermion determinant as well as its correlation with the chiral condensate and the baryon number for QCD at non-zero quark chemical potential. Results are derived to one-loop order in Chiral Perturbation Theory (ChPT), as well as by analytical and numerical calculations in QCD in one Euclidean dimension. We find a qualitative change of the distribution of the phase of the fermion determinant when the quark mass enters the spectrum of the Dirac operator: it changes from a periodicized Gaussian distribution to a periodicized Lorentzian distribution. We also explore the possibility that some observables remain weakly correlated with the phase of the fermion determinant even though the sign problem is severe. We discuss the practical implications of our findings on lattice simulations of QCD at non-zero baryon chemical potential.Comment: Presented at the XXVII International Symposium on Lattice Field Theory, July 26-31, 2009, Peking University, Beijing, China, 7 page

    QCD in One Dimension at Nonzero Chemical Potential

    Get PDF
    Using an integration formula recently derived by Conrey, Farmer and Zirnbauer, we calculate the expectation value of the phase factor of the fermion determinant for the staggered lattice QCD action in one dimension. We show that the chemical potential can be absorbed into the quark masses; the theory is in the same chiral symmetry class as QCD in three dimensions at zero chemical potential. In the limit of a large number of colors and fixed number of lattice points, chiral symmetry is broken spontaneously, and our results are in agreement with expressions based on a chiral Lagrangian. In this limit, the eigenvalues of the Dirac operator are correlated according to random matrix theory for QCD in three dimensions. The discontinuity of the chiral condensate is due to an alternative to the Banks-Casher formula recently discovered for QCD in four dimensions at nonzero chemical potential. The effect of temperature on the average phase factor is discussed in a schematic random matrix model.Comment: Latex, 23 pages and 5 figures; Added two references and corrected several typo

    Geometric phases under the presence of a composite environment

    Full text link
    We compute the geometric phase for a spin-1/2 particle under the presence of a composite environment, composed of an external bath (modeled by an infinite set of harmonic oscillators) and another spin-1/2 particle. We consider both cases: an initial entanglement between the spin-1/2 particles and an initial product state in order to see if the initial entanglement has an enhancement effect on the geometric phase of one of the spins. We follow the nonunitary evolution of the reduced density matrix and evaluate the geometric phase for a single two-level system. We also show that the initial entanglement enhances the sturdiness of the geometric phase under the presence of an external composite environment.Comment: 10 pages, 12 figures. Version to appear in Phys. Rev.

    BCS-BEC crossover of neutron pairs in symmetric and asymmetric nuclear matter

    Get PDF
    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matter obtained by a microscopic treatment based on the nucleon-nucleon interaction. These interactions are able to simulate the pairing gaps of either the bare interaction or the interaction screened by the medium polarization effects. It is shown that the medium polarization effects cannot be cast into the density power law function usually introduced together with the contact interaction and require the introduction of another isoscalar term. The BCS-BEC crossover of neutrons pairs in symmetric and symmetric nuclear matter is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. For the screened pairing interaction, a two-neutron BEC state is formed in symmetric matter at kFn0.2k_{Fn}\sim 0.2 fm1^{-1} (neutron density ρn/ρ0103\rho_n/\rho_0\sim 10^{-3}). Contrary the bare interaction does not form the BEC state at any neutron density

    One,Two,Zero: Scales of Strong Interactions

    Full text link
    We discuss our results on QCD with a number of fundamental fermions ranging from zero to sixteen. These theories exhibit a wide array of fascinating phenomena which have been under close scrutiny, especially in recent years, first and foremost is the approach to conformality. To keep this review focused, we have chosen scale generation, or lack thereof as a guiding theme, however the discussion will be set in the general framework of the analysis of the phases and phase transitions of strong interactions at zero and nonzero temperature.Comment: 15 pages, prepared for IJMPA Special Issue 'Recent Nonperturbative Developments in QCD-like Theories

    On the particle spectrum and the conformal window

    Get PDF
    We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental representation as a prototype of non-Abelian gauge theories inside the conformal window. Guided by the pattern of underlying symmetries, chiral and conformal, we analyze the two-point functions theoretically and on the lattice, and determine the finite size scaling and the infinite volume fermion mass dependence of the would-be hadron masses. We show that the spectrum in the Coulomb phase of the system can be described in the context of a universal scaling analysis and we provide the nonperturbative determination of the fermion mass anomalous dimension gamma*=0.235(46) at the infrared fixed point. We comment on the agreement with the four-loop perturbative prediction for this quantity and we provide a unified description of all existing lattice results for the spectrum of this system, them being in the Coulomb phase or the asymptotically free phase. Our results corroborate the view that the fixed point we are studying is not associated to a physical singularity along the bare coupling line and estimates of physical observables can be attempted on either side of the fixed point. Finally, we observe the restoration of the U(1) axial symmetry in the two-point functions.Comment: 40 pages, 22 figure
    corecore