1,890 research outputs found

    Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum.

    Get PDF
    International audienceAerobic life requires the presence of antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase to eliminate deleterious oxygen derivatives. Treponema pallidum, a microaerophilic bacterium responsible for venereal syphilis, is an interesting organism because it lacks all of the above-mentioned enzymes, as deduced from its recently sequenced genome. In this paper, we describe a gene in T. pallidum with sequence homologies to a new class of antioxidant systems, named superoxide reductases, recently isolated from sulfate-reducing bacteria (Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) J. Biol. Chem. 275, 115-121). We report that (i) expression of the T. pallidum gene fully restored to a superoxide dismutase-deficient Escherichia coli mutant the ability to grow under aerobic conditions; (ii) the corresponding protein displays a strong superoxide reductase activity; and (iii) the T. pallidum protein contains only one mononuclear nonheme ferrous center, able to reduce superoxide selectively and efficiently, whereas previously characterized superoxide reductase from Desulfoarculus baarsii contains an additional rubredoxin-like ferric center. These results suggest that T. pallidum antioxidant defenses rely on a new class of superoxide reductase and raise the question of the importance of superoxide reductases in mechanisms for detoxifying superoxide radicals

    Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity.

    Get PDF
    International audienceDesulfoferrodoxin is a small protein found in sulfate-reducing bacteria that contains two independent mononuclear iron centers, one ferric and one ferrous. Expression of desulfoferrodoxin from Desulfoarculus baarsii has been reported to functionally complement a superoxide dismutase deficient Escherichia coli strain. To elucidate by which mechanism desulfoferrodoxin could substitute for superoxide dismutase in E. coli, we have purified the recombinant protein and studied its reactivity toward O-(2). Desulfoferrodoxin exhibited only a weak superoxide dismutase activity (20 units mg(-1)) that could hardly account for its antioxidant properties. UV-visible and electron paramagnetic resonance spectroscopy studies revealed that the ferrous center of desulfoferrodoxin could specifically and efficiently reduce O-(2), with a rate constant of 6-7 x 10(8) M(-1) s(-1). In addition, we showed that membrane and cytoplasmic E. coli protein extracts, using NADH and NADPH as electron donors, could reduce the O-(2) oxidized form of desulfoferrodoxin. Taken together, these results strongly suggest that desulfoferrodoxin behaves as a superoxide reductase enzyme and thus provide new insights into the biological mechanisms designed for protection from oxidative stresses

    Power transformer under short-circuit fault conditions: A multiphysics approach

    Get PDF
    Transformers’ windings experience mechanical loads from electromagnetic forces due to the currents they carry. During normal operation, the resulting stresses and strains have minor influence, therefore they do not represent the significant risk to the devices’ integrity. However, transformers can suffer from high sudden short-circuit currents that are several times higher than those during the normal operation. These short-circuit currents are a significant threat, not only from an electrical but also from the structural integrity point of view. In this paper, coupled electromagnetic and structural mechanics simulations are carried out to evaluate short-circuit fault risks in a comprehensive and accurate way

    The size of two-body weakly bound objects : short versus long range potentials

    Get PDF
    The variation of the size of two-body objects is investigated, as the separation energy approaches zero, with both long range potentials and short range potentials having a repulsive core. It is shown that long range potentials can also give rise to very extended systems. The asymptotic laws derived for states with angular momentum l=1,2 differ from the ones obtained with short range potentials. The sensitivity of the asymptotic laws on the shape and length of short range potentials defined by two and three parameters is studied. These ideas as well as the transition from the short to the long range regime for the l=0 case are illustrated using the Kratzer potential.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Superoxide reductase from Desulfoarculus baarsii: reaction mechanism and role of glutamate 47 and lysine 48 in catalysis.

    Get PDF
    International audienceSuperoxide reductase (SOR) is a small metalloenzyme that catalyzes reduction of O(2)(*)(-) to H(2)O(2) and thus provides an antioxidant mechanism against superoxide radicals. Its active site contains an unusual mononuclear ferrous center, which is very efficient during electron transfer to O(2)(*)(-) [Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) J. Biol. Chem. 275, 115-121]. The reaction of the enzyme from Desulfoarculus baarsii with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bimolecular reaction of superoxide reductase with superoxide, with a rate constant of (1.1 +/- 0.3) x 10(9) M(-1) s(-1). A first intermediate is formed which is converted to a second one at a much slower rate constant of 500 +/- 50 s(-1). Decay of the second intermediate occurs with a rate constant of 25 +/- 5 s(-1). These intermediates are suggested to be iron-superoxide and iron-peroxide species. Furthermore, the role of glutamate 47 and lysine 48, which are the closest charged residues to the vacant sixth iron coordination site, has been investigated by site-directed mutagenesis. Mutation of glutamate 47 into alanine has no effect on the rates of the reaction. On the contrary, mutation of lysine 48 into an isoleucine led to a 20-30-fold decrease of the rate constant of the bimolecular reaction, suggesting that lysine 48 plays an important role during guiding and binding of superoxide to the iron center II. In addition, we report that expression of the lysine 48 sor mutant gene hardly restored to a superoxide dismutase-deficient Escherichia coli mutant the ability to grow under aerobic conditions

    High-order homogenisation of the time-modulated wave equation: non-reciprocity for a single varying parameter

    Full text link
    Laminated media with material properties modulated in space and time in the form of travelling waves have long been known to exhibit non-reciprocity. However, when using the method of low frequency homogenisation, it was so far only possible to obtain non-reciprocal effective media when both material properties are modulated in time, in the form of a Willis-coupling (or bi-anisotropy in electromagnetism) model. If only one of the two properties is modulated in time, while the other is kept constant, it was thought impossible for the method of homogenisation to recover the expected non-reciprocity since this Willis-coupling coefficient then vanishes. Contrary to this belief, we show that effective media with a single time-modulated parameter are non-reciprocal, provided homogenization is pushed to the second order. This is illustrated by numerical experiments (dispersion diagrams and time-domain simulations) for a bilayered modulated medium

    Assessing Behavioral Momentum in Humans with Mental Retardation and Unstable Baselines

    Get PDF
    Our laboratory is currently conducting studies of behavioral momentum in humans with mental retardation. A better understanding of momentum effects may contribute to more effective procedures for reducing or eliminating learning problems in this population (e.g., McIlvane & Dube, 2000). In our studies, we have occasionally encountered cases where even liberal baseline stability criteria were not met after a substantial number of sessions, and thus typical procedures for evaluating momentum were not appropriate. This brief report will describe an alternative testing procedure that we are examining for use in these situations
    corecore