34 research outputs found
Multivesicular exocytosis in rat pancreatic beta cells
AIMS/HYPOTHESIS: To establish the occurrence, modulation and functional significance of compound exocytosis in insulin-secreting beta cells. METHODS: Exocytosis was monitored in rat beta cells by electrophysiological, biochemical and optical methods. The functional assays were complemented by three-dimensional reconstruction of confocal imaging, transmission and block face scanning electron microscopy to obtain ultrastructural evidence of compound exocytosis. RESULTS: Compound exocytosis contributed marginally (<5% of events) to exocytosis elicited by glucose/membrane depolarisation alone. However, in beta cells stimulated by a combination of glucose and the muscarinic agonist carbachol, 15-20% of the release events were due to multivesicular exocytosis, but the frequency of exocytosis was not affected. The optical measurements suggest that carbachol should stimulate insulin secretion by ∼40%, similar to the observed enhancement of glucose-induced insulin secretion. The effects of carbachol were mimicked by elevating [Ca(2+)](i) from 0.2 to 2 μmol/l Ca(2+). Two-photon sulforhodamine imaging revealed exocytotic events about fivefold larger than single vesicles and that these structures, once formed, could persist for tens of seconds. Cells exposed to carbachol for 30 s contained long (1-2 μm) serpentine-like membrane structures adjacent to the plasma membrane. Three-dimensional electron microscopy confirmed the existence of fused multigranular aggregates within the beta cell, the frequency of which increased about fourfold in response to stimulation with carbachol. CONCLUSIONS/INTERPRETATION: Although contributing marginally to glucose-induced insulin secretion, compound exocytosis becomes quantitatively significant under conditions associated with global elevation of cytoplasmic calcium. These findings suggest that compound exocytosis is a major contributor to the augmentation of glucose-induced insulin secretion by muscarinic receptor activation
Membrane capacitance techniques to monitor granule exocytosis in neutrophils.
Cell membranes behave like electrical capacitors and changes in cell capacitance therefore reflect changes in the cell area. Monitoring capacitance can thus be used to study dynamic cellular phenomenon involving rapid changes in cell surface, such as exo- and/or endocytosis. In this review focus is on the use of capacitance techniques to study exocytosis in human neutrophils. We compare the whole-cell and the cell-attached capacitance techniques, and we review the complete literature dealing with capacitance measurements in human neutrophils
Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration.
We have studied exocytosis of single small granules from human neutrophils by capacitance recordings in the cell-attached configuration. We found that 2.2% of the exocytotic events were flickers. The flickers always ended with a downward step. This indicates closing of the fusion pore. During flickering, the fusion pore conductance remained below 1 nS, and no net membrane transfer was detectable. After fusion pore expansion beyond 1 nS the pore expanded irreversibly, leading to rapid full incorporation of the granule/vesicle into the plasma membrane. Following exocytosis of single granules, a capacitance decrease directly related to the preceding increase was observed in 7% of the exocytotic events. This decrease followed immediately after irreversible pore expansion, and is presumably triggered by full incorporation of the vesicle into the patch membrane. The capacitance decrease could be interpreted as endocytosis triggered by exocytosis. However, the gradual decrease could also reflect a decrease in the "free" patch area following incorporation of an exocytosed vesicle. We conclude that non-stepwise capacitance changes must be interpreted with caution, since a number of factors go into determining cell or patch admittance
The exocytotic fusion pore of small granules has a conductance similar to an ion channel
We measured capacitance changes in cell attached patches of human neutrophils using a high frequency lock-in method. With this technique the noise level is reduced to 0.025 fF such that capacitance steps of 0.1 fF are clearly detected corresponding to exo- and endocytosis of single 60 nm vesicles. It is thus possible to detect almost all known exocytotic and endocytotic processes including exocytosis of small neurotransmitter containing vesicles in most cell types as well as endocytosis of coated and uncoated pits. In neutrophils we demonstrate a stepwise capacitance decrease generated by 60-165 nm vesicles as expected for endocytosis of coated and non-coated pits. Following ionomycin stimulation a stepwise capacitance increase is observed consisting of 0.1-5 fF steps corresponding to the different granule types of human neutrophils from secretory vesicles to azurophil granules. The opening of individual fusion pores is resolved during exocytosis of 200 nm vesicles. The initial conductance has a mean value of 150 pS and can be as low as 35 pS which is similar to the conductance of many ion channels suggesting that the initial fusion pore is formed by a protein complex
Compound exocytosis of granules in human neutrophils.
Human neutrophils are of prime importance for the immune defense. Recent data from eosinophils and pancreatic beta cells have indicated that granules, upon exocytosis, occasionally fuse with each other in the cytosol prior to their subsequent fusion with the plasma membrane. This is termed compound exocytosis. We therefore studied exocytosis of single granules from human neutrophils by the high-resolution cell-attached patch-clamp capacitance technique. We found that 1.5% of the capacitance steps was greater than 5 fF, i.e., significantly larger than steps expected for exocytosis of single granules. The mean step size of these events was 20.5 fF, corresponding to compounds formed by at least five granules. The capacitance input from compound steps contributed more than 20% of the total capacitance increase. Electron microscopy captured morphological manifestations of transient exocytic events, confirming the functional results obtained by capacitance measurements. Compound exocytosis may be a mechanism for efficient targeting of release during exocytosis