38 research outputs found

    Carbon States in Carbon-Encapsulated Nickel Nanoparticles Studied by Means of X-Ray Absorption, Emission, and Photoelectron Spectroscopies

    Full text link
    Electronic structure of nickel nanoparticles encapsulated in carbon was characterized by photoelectron, X-ray absorption, and X-ray emission spectroscopies. Experimental spectra are compared with the density of states calculated in the frame of the density functional theory. The carbon shell of Ni nanoparticles has been found to be multilayer graphene with significant (about 6%) amount of Stone--Wales defects. Results of the experiments evidence protection of the metallic nanoparticles from the environmental degradation by providing a barrier against oxidation at least for two years. Exposure in air for 2 years leads to oxidation only of the carbon shell of Ni@C nanoparticles with coverage of functional groups.Comment: 16 pages, 6 figures, accepted in J. Phys. Chem.

    Formation of Active Centers of Nickel–Zinc Catalysts Deposited on the Nanodiamond for the Selective Hydrogenation of Phenylacetylene

    No full text
    A study is performed of bimetallic catalysts NiZn/ND with ratios Ni : Zn = 1 : 1 and 1 : 3 prepared by impregnation using detonation nanodiamond (ND) as a support. They were compared with monometallic Ni/ND and Zn/ND. It is shown by nitrogen adsorption/desorption, scanning and transmission electron microscopy that metal deposition does not affect the porous structure or morphology of a support. Coordination of metal precursors on a nanodiamond surface proceeds with the participation of functional groups, as is confirmed by a change in the electrokinetic charge of the surface. The reduction of metal precursors is studied by temperature-programmed reduction and in situ XAFS spectroscopy. In Ni-containing samples, two forms of Ni2+ are found that are bonded differently with the support. ZnO is not reduced in the samples upon treatment with hydrogen at temperatures up to 400°C. The fraction of reduced nickel is determined by analyzing XANES spectra. Virtually full reduction of nickel is observed in a catalyst with a Ni : Zn ratio of 1 : 1 after 4 h of in situ treatment with hydrogen inside a spectrometer cell at 400°C, but not at a Ni : Zn ratio of 1 : 3 under the same conditions. The highest selectivity of styrene formation in the reaction of phenylacetylene hydrogenation throughout the investigated range of temperatures (100–350°С) is ensured by NiZn/ND; NiZn3_3/ND is less active and selective, since ZnO closes the active nickel centers and prevents the adsorption of phenylacetylene

    Dual degradation signals control Gli protein stability and tumor formation

    No full text
    Regulated protein destruction controls many key cellular processes with aberrant regulation increasingly found during carcinogenesis. Gli proteins mediate the transcriptional effects of the Sonic hedgehog pathway, which is implicated in up to 25% of human tumors. Here we show that Gli is rapidly destroyed by the proteasome and that mouse basal cell carcinoma induction correlates with Gli protein accumulation. We identify two independent destruction signals in Gli1, D(N) and D(C), and show that removal of these signals stabilizes Gli1 protein and rapidly accelerates tumor formation in transgenic animals. These data argue that control of Gli protein accumulation underlies tumorigenesis and suggest a new avenue for antitumor therapy

    Correction of morphofunctional disorders of the cardiovascular system with asialized erythropoietin and arginase II selective inhibitors KUD 974 and KUD 259 in experimental preeclampsia

    No full text
    Introduction: Preeclampsia remains one of the most common causes of maternal and perinatal mortality worldwide. A significant role in the pathogenesis of this pathology is assigned to placental ischemia and endothelial dysfunction. Therefore, the aim of the present study was to study the effectiveness of asialized erythropoietin and arginase II selective inhibitors: KUD-259 and KUD-974 in the correction of morphofunctional disorders of the cardiovascular system in experimental preeclampsia. Materials and methods: The study was performed in 260 female Wistar rats, each weighing 250–300 g. An ADMA-like preeclampsia was reproduced in the experiment. To assess the emerging morphofunctional disorders, the following parameters were used: blood pressure, coefficient of endothelial dysfunction, microcirculation in the placenta, proteinuria, fluid content in the omentum, concentration of terminal metabolites in the blood plasma, and morphometric parameters of fetuses. Results and discussion: The administration of arginase II selective inhibitor KUD-974 in combination with asialized erythropoietin leads to a pronounced correction of emerging changes: a decrease in systolic and diastolic blood pressure in 1.5 and 1.7 times, a decrease in proteinuria in 3.6 times and a decrease in fluid content in the omentum. When arginase II selective inhibitor KUD 974 and asialized erythropoietin are used with methyldopa, the positive effects of the former are enhanced. Conclusion: Arginase II selective inhibitors KUD-259 and KUD-974 and asialized erythropoietin have a pronounced positive effect on the correction of morphofunctional disorders in animals with ADMA-like preeclampsia

    Chlorobenzene hydrodechlorination on bimetallic catalysts prepared by laser electrodispersion of NiPd alloy

    Full text link
    NiPd bimetallic systems were for the first time synthesized by laser electrodispersion (LED) of the Ni 77 Pd 23 alloy target followed by the deposition of produced bimetallic particles on a TEM copper grid and alumina granules. Selective area energy-dispersive analysis confirms the bimetallic nature of NiPd particles deposited on a TEM copper grid. Their mean size is 1.0 nm according to TEM. XPS data demonstrate that under deposition on alumina granules (total metal content of 0.005 wt.%), nickel in bimetallic particles nearly completely oxidizes to Ni 2+ species predominantly in the form of aluminate. At the same time major part of palladium (84%) exists in Pd 0 but oxidizes to Pd 2+ (80%) during 6 months storage in air. Both metals are deposited on the external surface of alumina granules and localized in the same areas. In situ reduction of both metals by H 2 in the catalytic cell of XPS spectrometer is hindered. Nickel is not reduced even at 450°C, confirming the formation of NiAlO x , whereas palladium is reduced at higher temperatures compared to a similar monometallic catalyst. Nevertheless, NiPd/Al 2 O 3 catalyst is more efficient in gas-phase chlorobenzene hydrodechlorination at 150-350°C than Ni/Al 2 O 3 and even Pd/Al 2 O 3 , and much more stable. The difference may be caused by the formation of new active sites due to the contact between Pd 0 and NiAlO x -modified support, and the protective action of spinel reacting with HCl by-product. © 2018 IUPAC and De Gruyter.Funding: This work was financially supported by RFBR, Funder Id: 10.13039/501100002261 (grant 16-03-00073) and in part by Institute of Metal Physics in the frame of “Magnit” Program
    corecore