29 research outputs found
Numerical investigation of micro-channel based active module cooling for solar CPV system
PublishedConference Proceeding4th International Conference on Advances in Energy Research 2013, ICAER 2013Concentrating photovoltaic (CPV) technology is one of the fastest growing solar energy technologies achieving higher electrical conversion efficiencies. The increase in temperature of solar CPV cell significantly reduces the performance; the efficiency of a CPV system can be improved by introducing effective thermal management or cooling system. This paper presents the design and numerical analysis of a heat sink based on micro-channels for efficient cooling of a commercial high concentration photovoltaic (HCPV) cell. A combinatory model of an array of micro-channels enclosed in a wide parallel flow channel design is developed. The optimized geometry of the micro-channel heat sink was found by using commercial CFD software ANSYS 13. Based on numerical simulations, it is found that the optimum configuration of micro-channel with 0.5mm width and aspect ratio of 8. The micro-channels provided high heat transfer over heat generations spots and parallel flow channels resulted in lower pressure drop. The temperature rise across the micro-channel is estimated as10K in CPV module of 120 × 120 mm2 and with a pressure drop of 8.5 kPa along a single channel with six such channels in each modules at a flow rate of 0.105 liter/s. © 2014 The Authors
Thermal Performance of a Solar Concentrating Photovoltaic Module with Spiral Mini Channel Heat Sink
ICP 2015: International Conference on Polygeneration, Chennai, India, 18-20 February 2015Concentrating Photovoltaic (CPV) power generation is one of the attractive choices for efficient utilization of solar energy due to its high cogeneration efficiency. The increase in temperature of solar CPV cell significantly reduces the performance. The efficiency of a CPV system can be improved by introducing effective thermal management or cooling system. In this paper, a new spiral mini channel heat sink with rectangular cross section is developed and its performance is numerically analysed using commercial CFD software ANSYS 14. The mini-channels provided high heat transfer over cell surface area and resulted in lower pressure drop. The coolant outlet temperature rise across the mini-channel is estimated as 343K in CPV module of 300 X 300 mm2 and with a pressure drop of 8.043 k Pa at a flow rate of 0.16 liter/s. Based on numerical simulations, it is found that the optimum configuration of micro-channel with 4mm width and height of 20mm, having higher figure of merit.Department of Science and Technology (DST), Government of Indi
An Experimental Analysis of a Solar Greenhouse Drier: Computational Fluid Dynamics (CFD) Validation
Heat Transfer Studies and Cost Analysis of a Shell-and-Tube Heat Exchanger using Aluminum Chips as Porous Medium
Design and analysis of dense array CPV receiver for square parabolic dish system with CPC array as secondary concentrator
A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid
Numerical Investigation of Micro-channel based Active Module Cooling for Solar CPV System
AbstractConcentrating photovoltaic (CPV) technology is one of the fastest growing solar energy technologies achieving higher electrical conversion efficiencies. The increase in temperature of solar CPV cell significantly reduces the performance; the efficiency of a CPV system can be improved by introducing effective thermal management or cooling system. This paper presents the design and numerical analysis of a heat sink based on micro-channels for efficient cooling of a commercial high concentration photovoltaic (HCPV) cell. A combinatory model of an array of micro-channels enclosed in a wide parallel flow channel design is developed. The optimized geometry of the micro-channel heat sink was found by using commercial CFD software ANSYS 13. Based on numerical simulations, it is found that the optimum configuration of micro-channel with 0.5mm width and aspect ratio of 8. The micro-channels provided high heat transfer over heat generations spots and parallel flow channels resulted in lower pressure drop. The temperature rise across the micro-channel is estimated as10K in CPV module of 120 x 120 mm2 and with a pressure drop of 8.5kPa along a single channel with six such channels in each modules at a flow rate of 0.105 liter/s
