6 research outputs found

    Temperature dependence of the acoustoelectric current in graphene

    Get PDF
    PublishedThe acoustoelectric current in graphene has been investigated as a function of temperature, surface acoustic wave (SAW) intensity, and frequency. At high SAW frequencies, the measured acoustoelectric current decreases with decreasing temperature, but remains positive, which corresponds to the transport of holes, over the whole temperature range studied. The current also exhibits a linear dependence on the SAW intensity, consistent with the interaction between the carriers and SAWs being described by a relatively simple classical relaxation model. At low temperatures and SAW frequencies, the measured acoustoelectric current no longer exhibits a simple linear dependence on the SAW intensity, and the direction of the acoustoelectric current is also observed to reverse under certain experimental conditions.Royal Societ

    Macroscopic acoustoelectric charge transport in graphene

    Get PDF
    Copyright © 2013 AIP PublishingWe demonstrate macroscopic acoustoelectric transport in graphene, transferred onto piezoelectric lithium niobate substrates, between electrodes up to 500 μm apart. Using double finger interdigital transducers we have characterised the acoustoelectric current as a function of both surface acoustic wave intensity and frequency. The results are consistent with a relatively simple classical relaxation model, in which the acoustoelectric current is proportional to both the surface acoustic wave intensity and the attenuation of the wave caused by the charge transport.Royal Societ

    Acoustoelectric photoresponse in graphene

    Get PDF
    Journal ArticleThe acoustoelectric current in graphene has been investigated as a function of illumination, using blue (450nm) and red (735nm) light-emitting diodes (LEDs), and surface acoustic wave (SAW) intensity and frequency. The measured acoustoelectric current increases with illumination, more than the measured change in the conductivity of the graphene, whilst retaining a linear dependence on the SAW intensity. The latter is consistent with the interaction between the carriers and SAWs being described by a relatively simple classical relaxation model suggesting that the change in the acoustoelectric current is caused by the effect of the illumination on the electronic properties of the graphene. The increase in the acoustoelectric current is greatest under illumination with the blue LED, consistent with the creation of a hot electron distribution

    Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles

    Get PDF
    The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications

    Synthesis, magnetic and optical properties of core/shell Co<sub>1-<it>x</it> </sub>Zn<it> <sub>x</sub> </it>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2 </sub>nanoparticles

    No full text
    Abstract The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified St&#246;ber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400&#176;C, 600&#176;C and 800&#176;C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400&#176;C to 800&#176;C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800&#176;C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400&#176;C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.</p
    corecore