4,676 research outputs found

    Estimation of stress-dependent anisotropy from P-wave measurements on a spherical sample

    Get PDF
    Our aim is to understand the stress-dependent seismic anisotropy of the overburden shale in an oil field in the North West Shelf of Western Australia. We analyze data from measurements of ultrasonic P-wave velocities in 132 directions for confining pressures of 0.1–400 MPa on a spherical shale sample. First, we find the orientation of the symmetry axis, assuming that the sample is transversely isotropic, and then transform the ray velocities to the symmetry axis coordinates. We use two parameterizations of the phase velocity; one, in terms of the Thomsen anisotropy parameters α, β, ɛ, δ as the main approach, and the other in terms of α, β, η, δ. We invert the ray velocities to estimate the anisotropy parameters α, ɛ, δ, and η using a very fast simulated reannealing algorithm. Both approaches result in the same estimation for the anisotropy parameters but with different uncertainties. The main approach is robust but produces higher uncertainties, in particular for η, whereas the alternative approach is unstable but gives lower uncertainties. These approaches are used to find the anisotropy parameters for the different confining pressures. The dependency of P-wave velocity, α, on pressure has exponential and linear components, which can be contributed to the compliant and stiff porosities. The exponential dependence at lower pressures up to 100 MPa corresponds to the closure of compliant pores and microcracks, whereas the linear dependence at higher pressures corresponds to contraction of the stiff pores. The anisotropy parameters ɛ and δ are quite large at lower pressures but decrease exponentially with pressure. For lower pressures up to 10 MPa, δ always is larger than ɛ; this trend is reversed for higher pressures. Despite the hydrostatic pressure, the symmetry axis orientation changes noticeably, in particular at lower pressures. </jats:p

    Estimation of stress induced azimuthal anisotropy - AVO modeling

    Get PDF
    The analysis of rock anisotropy in terms of seismic velocities and within the context of rock-physics (Biot-Gassmann theory of poroelasticity) provides important information for the evaluation of the stress state (tensors) of rocks, detection of the directions of formation weaknesses, helps in the estimation of overall permeability and failure prediction. Understanding the influence of stress and pore pressure on seismic velocities is important for 4-D reflection seismic interpretation, AVO analysis and reservoir modeling. Laboratory measurements were carried out on spherical shale samples from the overburden under confining stress up to 400 MPa, by means of ultrasonic soundings in 132 independent directions. Such an approach enables the estimation of 3-D elastic anisotropy. Assuming VTI symmetry approximation, from the measured velocities the stiffness tensor was inverted. Since the sandstones were partly unconsolidated, it was not possible to take ultrasonic measurements . To overcome this, we developed a method for stress induced azimuthal anisotropy estimation using only cross-dipole logging data. These results give the possibility for anisotropic correction in AVO analysis

    First Results from the TOTEM Experiment

    Full text link
    The first physics results from the TOTEM experiment are here reported, concerning the measurements of the total, differential elastic, elastic and inelastic pp cross-section at the LHC energy of s\sqrt{s} = 7 TeV, obtained using the luminosity measurement from CMS. A preliminary measurement of the forward charged particle η\eta distribution is also shown.Comment: Conference Proceeding. MPI@LHC 2010: 2nd International Workshop on Multiple Partonic Interactions at the LHC. Glasgow (UK), 29th of November to the 3rd of December 201

    An analytical program for fermion pair production in e+e- annihilation

    Get PDF
    We describe how to use {\tt ZFITTER}, a program based on a semi-analytical approach to fermion pair production in e^+ e^- annihilation and Bhabha scattering. A flexible treatment of complete {\cal O}(\alpha) QED corrections, also including higher orders, allows for three calculational {\bf chains} with different realistic sets of restrictions in the photon phase space. {\tt ZFITTER} consists of several {\bf branches} with varying assumptions on the underlying hard scattering process. One includes complete {\cal O}(\alpha) weak loop corrections with a resummation of leading higher-order terms. Alternatively, an ansatz inspired from S-matrix theory, or several model-independent effective Born cross sections may be convoluted. The program calculates cross sections, forward-backward asymmetries, and for \tau~pair production also the final-state polarization. Various {\bf interfaces} allow fits to be performed with different sets of free parameters

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
    • …
    corecore