6 research outputs found

    The influence of poultry litter biochar on early season cotton growth

    Get PDF
    Cotton is known for being sensitive to cool, wet soils, especially in the early stages of growth. Amendments to soil can aid cotton seedlings in development and nutrient uptake. However, soil amendments can be costly and detrimental to the environment, and alternatives such as the addition of biochar have been considered. Biochar is produced from biomass that has gone through pyrolysis and has been shown to improve plant yield, microbial response, soil structure, soil cation–exchange capacity, and water use efficiency. This study was conducted to evaluate the effect of biochar on early season cotton growth. The aim of this study was to determine whether biochar aids nutrient uptake and seedling development during the seedling’s life cycle. The study was established in October 2013 in the greenhouse at the University of Arkansas using a randomized complete block design with three replications. Treatments included a control with no fertilizer or biochar, a control with fertilizer (56 kg N/ ha) and no biochar, and two fertilizer treatments (0 or 56 kg N/ ha) each with 1500 or 3000 kg/ha biochar. Plants were grown for eight weeks then harvested to collect plant height, plant fresh weight, plant dry weight, and leaf area. Data showed that the highest level of biochar with additional fertilizer provided the best growth response in plant height, fresh weight dry weight, and leaf area at 27.52 cm, 14.7g, 1.87 g, and 419.48 cm2 , respectively

    Potassium: A Vital Macronutrient in Potato Production—A Review

    No full text
    Potassium (K) is a primary macronutrient for overall plant growth, yield potential, product quality and stress resistance of crops. Potato (Solanum tuberosum L.) crops require a high amount of potassium to achieve the ideal yield and quality. Therefore, the determination of optimum K rate and efficient source for potato is necessary because K affects crop physiological processes, dry matter production, cooking, and processing requirements. Through modeling on the pooled data extracted from 62 studies, the highest tuber yields might be obtained at an exchangeable soil K level of 200 mg kg−1 approximately, dependent on soil pH, texture, and organic matter. Through modeling on the data of 48 studies, it also revealed that application of potassium sulfate (K2SO4) and potassium chloride (KCl) at rates of 200 kg ha−1 and potassium nitrate (KNO3) at a rate of 100 kg ha−1 might achieve the ideal yield, implying the importance of K sources in potato production. However, these values (either soil exchangeable K content, or fertilizer rates) might not be applicable in a specific growing environment for a specific potato variety. It seems that there is no discrimination among split, pre-plant or in-season application of K, although pre-plant fertilization might be a trustworthy strategy for economic tuber yield. Owing to the luxury consumption of K by potato crop, a combination of factors, including soil exchangeable K level, petiole K concentration, crop removal amount, soil conditions, management practices, climatic conditions, and potato variety, should be considered in order to make rational K fertilizer recommendations

    DataSheet_1_Carbon assimilation and distribution in cotton photosynthetic organs is a limiting factor affecting boll weight formation under drought.docx

    No full text
    Previous studies have documented cotton boll weight reductions under drought, but the relative importance of the subtending leaf, bracts and capsule wall in driving drought-induced reductions in boll mass has received limited attention. To investigate the role of carbon metabolism in driving organ-specific differences in contribution to boll weight formation, under drought conditions. Controlled experiments were carried out under soil relative water content (SRWC) (75 ± 5)% (well-watered conditions, control), (60 ± 5)% (moderate drought) and (45 ± 5)% (severe drought) in 2018 and 2019 with two cultivars Yuzaomian 9110 and Dexiamian 1. Under severe drought, the decreases of photosynthetic rate (Pn) and carbon isotope composition (δ13C) were observed in the subtending leaf, bract and capsule wall, suggesting that carbon assimilation of three organs was restricted and the limitation was most pronounced in the subtending leaf. Changes in the activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy), invertases as well as the reduction in expression of sucrose transporter (GhSUT1) led to variabilities in the sucrose content of three organs. Moreover, photosynthate distribution from subtending leaf to seeds plus fibers (the components of boll weight) was significantly restricted and the photosynthetic contribution rate of subtending leaf to boll weight was decreased, while contributions of bracts and capsule wall were increased by drought. This, in conjunction with the observed decreases in boll weight, indicated that the subtending leaf was the most sensitive photosynthetic organ to drought and was a dominant driver of boll weight loss under drought. Therefore, the subtending leaf governs boll weight loss under drought due to limitations in carbon assimilation, perturbations in sucrose metabolism and inhibition of sucrose transport.</p

    Potassium deficiency limits reproductive success by altering carbohydrate and protein balances in cotton ( Gossypium hirsutum L.)

    No full text
    Reproductive success in higher plants requires a lot of energy and substance provided by carbohydrate and protein metabolism, and potassium (K) plays an important role in carbohydrate and protein metabolism. However, it is unclear whether K deficiency limits reproductive success by disturbing carbohydrate and protein metabolism. The objectives of this study were to explore the effects of K deficiency on carbohydrate and protein metabolism in subtending leaves, phloem and pistils, and their relationship with reproductive success. A cotton cultivar DP0912 was grown in K-deficient (0 mM K+) and K-sufficient (6 mM K+) nutrient solution in growth chambers. Results showed that Pn of the subtending leaves was decreased under K deficiency, but sucrose, starch and free amino acid contents were markedly increased in the K-deficient leaves, because K deficiency limited the translocation of sucrose and amino acid in phloem. As a result, sucrose and free amino acid contents were reduced by 47.3% and 51.8% in the K-deficient pistils than K-sufficient pistils, which led to further decreases in starch and protein accumulation in the K-deficient pistils. Glucose content was also reduced by 53.1% in the K-deficient pistils than K-sufficient pistils, due to the decreased acid and alkaline invertase activities, since sucrose synthase activity was not affected. Lastly, soluble carbohydrate and ATP contents were lower in the K-deficient pistils than K-sufficient pistils, similarly to the changes of pollen tube growth rate and seed set efficiency. It was concluded that the lower carbohydrate and ATP contents in the K-deficient pistils could not meet the energy requirements of pollen tube growth and seed set. Moreover, protein imbalance also limited pollen tube growth. Those changes resulted in lower seed set efficiency to limit reproductive successauthorsversionPeer reviewe

    Cultivars to face climate change effects on crops and weeds: a review

    No full text
    corecore