124 research outputs found

    Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta) 1.

    Get PDF
    International audienceA new algal class, the Bolidophyceae (Heterokonta), is described from one genus, Bolidomonas, gen, nov., and two species, Bolidomonas pacifica, sp, nov and Bolidomonas mediterranea, sp, nov., isolated from the equatorial Pacific Ocean and the Mediterranean Sea, respectively. Both species are approximately 1.2 mu m in diameter and have two unequal flagella; the longer flagellum bears tubular hairs, whereas the shorter is smooth. The flagellar basal apparatus is restricted to two basal bodies, and there is no transitional helix. Cells are naked, devoid of walls or siliceous structures. The internal cellular organization is simple with a single plastid containing a ring genophore and a girdle lamella, one mitochondrion with tubular cristae, and one Golgi apparatus close to the basal bodies. The Mediterranean and the Pacific species differ in the insertion angle between their flagella and their pattern of swimming, these differences possibly being linked to each other. Analyses of the SSU rDNA gene place the two strains as a sister group to the diatoms, Moreover, pigment analyses confirm this position, as fucoxanthin is found as the major carotenoid in both lineages. These data strongly suggest that the ancestral heterokont that gave rise to the diatom lineage was probably a biflagellated unicell

    The Thorium Molten Salt Reactor : Moving on from the MSBR

    Full text link
    A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.Comment: 11 pages, 8 figures, 6 table

    Substrate effects in the photoenhanced ozonation of pyrene

    Get PDF
    We report the effects of actinic illumination on the heterogeneous ozonation kinetics of solid pyrene films and pyrene adsorbed at air-octanol and air-aqueous interfaces. Upon illumination, the ozonation of solid pyrene films and pyrene at the air-aqueous interface proceeds more quickly than in darkness; no such enhancement is observed for pyrene at the air-octanol interface. Under dark conditions, the reaction of pyrene at all three interfaces proceeds via a Langmuir-Hinshelwood-type surface mechanism. In the presence of light, Langmuir-Hinshelwood kinetics are observed for solid pyrene films but a linear dependence upon gas-phase ozone concentration is observed at the air-aqueous interface. We interpret these results as evidence of the importance of charge-transfer pathways for the ozonation of excited-state pyrene. The dramatically different behaviour of pyrene at the surface of these three simple reaction environments highlights the difficulties inherent in representing complex reactive surfaces in the laboratory, and suggests caution in extrapolating laboratory results to environmental surfaces

    Experimental demonstration of extended depth-of-field f/1.2 visible High Definition camera with jointly optimized phase mask and real-time digital processing

    Get PDF
    Increasing the depth of field (DOF) of compact visible high resolution cameras while maintaining high imaging performance in the DOF range is crucial for such applications as night vision goggles or industrial inspection. In this paper, we present the end-to-end design and experimental validation of an extended depth-of-field visible High Definition camera with a very small f-number, combining a six-ring pyramidal phase mask in the aperture stop of the lens with a digital deconvolution. The phase mask and the deconvolution algorithm are jointly optimized during the design step so as to maximize the quality of the deconvolved image over the DOF range. The deconvolution processing is implemented in real-time on a Field-Programmable Gate Array and we show that it requires very low power consumption. By mean of MTF measurements and imaging experiments we experimentally characterize the performance of both cameras with and without phase mask and thereby demonstrate a significant increase in depth of field of a factor 2.5, as it was expected in the design step
    corecore