204 research outputs found

    Time Series Measurements of Chlorophyll Fluorescence in the Oceanic Bottom Boundary Layer With a Multisensor Fiber-Optic Fluorometer

    Get PDF
    An in situ multisensor fiber-optic fluorometer (MFF) has been developed to acquire long-term chlorophyll fluorescence measurements in the oceanic bottom boundary layer to characterize the finescale pigment structure at vertical spatial scales comparable to physical measurements. The eight fluorescence sensors of the MFF are composed of dual optical fibers of varying lengths (1.5-8 m), with the fiber ends oriented at 30 degrees to each other and enclosed by a small light baffle. Strobe excitation blue light is passed through one of each pair of optical fibers and stimulated chlorophyll fluorescence is carried back to a photomultiplier. Two sets of four fluorescence sensors assigned to high- and low-sensitivity photomultiplier detectors enable chlorophyll a measurements in two ranges, 0-50 mg m(-3) and 0-200 mg m(-3), respectively. Aspects of the design of the fiber-optic sensor are described that were intended to optimize detection of fluorescence signals and minimize interference by ambient light. The fiber-optic sensor outputs were stable with minimal instrument drift during long-term field operations, and measurements were not affected by turbidity and ambient light. A vertical array of fiber-optic fluorescence sensors supported on a tripod has been deployed at coastal sites for up to seven weeks and chlorophyll fluorescence was obtained with sufficiently high vertical spatial and temporal resolution

    Chloropigment Distribution and Transport On the Inner Shelf Off Duck, North Carolina

    Get PDF
    The distribution and movement of chloropigments (chlorophylls and associated degradation products) in the bottom boundary layer near Duck, North Carolina, were examined during July and August 1994. Time series of chloropigment fluorescence, current velocity, and surface wave properties were acquired from instruments mounted on a bottom tripod set at 20 m depth. These data were combined with moored current meter measurements, meteorological data, and shipboard surveys in a comparative assessment of physical processes and chloropigment distribution over a wide range of temporal and spatial scales. Two dominant scales of chloropigment variation were observed. On numerous occasions, small-scale (order m) structure in the near-bottom fluorescence field was observed, even in the absence of identifiable structure in the temperature and salinity fields. Over larger timescales and space scales, variations in fluorescence were related to changes in water mass properties that could be attributed to alternating events of upwelling and downwelling. This view was reinforced by shipboard measurements that revealed correlations between fluorescence and hydrographic fields, both of which were modified by wind-forced upwelling and downwelling and by the advection of low-salinity water from Chesapeake Bay. Local resuspension of sediments did not contribute appreciably to the near-bottom pigment load seen at the tripod, because of low bottom stress. Estimates of chloropigment flux indicated a net shoreward transport of chloropigments in the lower boundary layer. However, the rapid fluctuations of currents and pigment concentrations gave rise to large and frequent variations in chloropigment fluxes, generating uncertainty in extrapolations of this finding to longer timescales

    Spring Phytoplankton Photosynthesis, Growth, and Primary Production and Relationships to a Recurrent Coastal Sediment Plume and River Inputs in Southeastern Lake Michigan

    Get PDF
    [1] A recurrent coastal sediment plume (RCP) is an episodic event in the southern basin of Lake Michigan that typically coincides with the spring diatom bloom. Strong winter storm activity during El Nino conditions in 1998 resulted in a large and intense RCP event. Consistently higher values of the light-saturated rate of photosynthesis, P-max(B), were observed in spring 1998 compared to 1999 and 2000. Higher values of P-max(B) in 1998 appeared to be related to increased availability of phosphorus, as evidenced by significant correlations of P-max(B) with soluble reactive phosphorus (SRP). Light-saturated growth rates were also significantly correlated with SRP concentrations. These findings were consistent the view that the RCP was a source of enrichment. However, incubation experiments involving lake water enriched with sediments showed relatively small increases in growth and photosynthetic parameters, while enrichments with river water exhibited elevated rates. This result, along with increased levels of river discharge in 1998 and high levels of dissolved phosphorus in river water, supported the view that riverine inputs rather than the RCP were responsible for the higher photosynthetic parameters and growth seen for coastal margin assemblages. Despite the higher levels of P-max(B) in 1998, model analyses revealed that reduced light availability resulting from the intense RCP event constrained phytoplankton growth rates and primary production during this season and apparently suppressed the development of a typical spring bloom. These findings indicate a potential for reduced ecosystem productivity in response to extreme storm events, the frequency of which may increase with projected long-term climate changes

    Characterization of Subsurface Polycyclic Aromatic Hydrocarbons at the Deepwater Horizon Site

    Get PDF
    Here, we report the initial observations of distributions of polycyclic aromatic hydrocarbons (PAH) in subsurface waters near the Deepwater Horizon oil well site (also referred to as the Macondo, Mississippi Canyon Block 252 or MC252 well). Profiles of in situ fluorescence and beam attenuation conducted during 9-16 May 2010 were characterized by distinct peaks at depths greater than 1000 m, with highest intensities close to the wellhead and decreasing intensities with increasing distance from the wellhead. Gas chromatography/mass spectrometry (GC/MS) analyses of water samples coinciding with the deep fluorescence and beam attenuation anomalies confirmed the presence of polycyclic aromatic hydrocarbons (PAH) at concentrations reaching 189 mu g L(-1) (ppb). Subsurface exposure to PAH at levels considered to be toxic to marine organisms would have occurred in discrete depth layers between 1000 and 1400 m in the region southwest of the wellhead site and extending at least as far as 13 km. Citation: Diercks, A.-R., et al. (2010), Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site, Geophys. Res. Lett., 37, L20602, doi: 10.1029/2010GL045046

    A review of carbon monitoring in wet carbon systems using remote sensing

    Get PDF
    Carbon monitoring is critical for the reporting and verification of carbon stocks and change. Remote sensing is a tool increasingly used to estimate the spatial heterogeneity, extent and change of carbon stocks within and across various systems. We designate the use of the term wet carbon system to the interconnected wetlands, ocean, river and streams, lakes and ponds, and permafrost, which are carbon-dense and vital conduits for carbon throughout the terrestrial and aquatic sections of the carbon cycle. We reviewed wet carbon monitoring studies that utilize earth observation to improve our knowledge of data gaps, methods, and future research recommendations. To achieve this, we conducted a systematic review collecting 1622 references and screening them with a combination of text matching and a panel of three experts. The search found 496 references, with an additional 78 references added by experts. Our study found considerable variability of the utilization of remote sensing and global wet carbon monitoring progress across the nine systems analyzed. The review highlighted that remote sensing is routinely used to globally map carbon in mangroves and oceans, whereas seagrass, terrestrial wetlands, tidal marshes, rivers, and permafrost would benefit from more accurate and comprehensive global maps of extent. We identified three critical gaps and twelve recommendations to continue progressing wet carbon systems and increase cross system scientific inquiry

    Physical-Biological Coupling in Southern Lake Michigan: Influence of Episodic Sediment Resuspension on Phytoplankton

    Full text link
    The influence of episodic, sediment resuspension on phytoplankton abundance/volume and composition, the photosynthetic maximum rate (P B max ) and efficiency (Ī± B ), and chlorophyll-specific growth (Ī¼ Chl ) was evaluated during the spring isothermal period in southern Lake Michigan (Laurentian Great Lakes, USA). Resuspension altered the nutrient and light climate of nearshore waters; light attenuation (K d ) and phosphorus concentrations corresponded (p ā‰¤ 0.0001 and p ā‰¤ 0.001, respectively) with concentrations of suspended particulate matter (SPM). Phytoplankton cell volume and diatom cell abundance and volume were not associated with SPM concentrations (p > 0.05). Diatom composition displayed spatial dissimilarities corresponding with resuspension (p ā‰¤ 0.001); small centric diatoms exhibiting meroplanktonic life histories and pennate diatoms considered benthic in origin were most abundant within SPM-impacted, nearshore waters whereas taxa typically comprising assemblages in optically-clear, offshore waters and the basin-wide, spring bloom were not. Values of P B max and Ī± B corresponded (p ā‰¤ 0.0001) with both K d coefficients and SPM concentrations, potentially reflecting increased light harvesting/utilization within impacted assemblages. However, integral production was inversely associated with K d coefficients and SPM concentrations (p < 0.0001) and photosynthesis was light-limited (or nearly so) for most assemblages. Although Ī¼ Chl values corresponded with K d coefficients (p ā‰¤ 0.05), values were quite low (x Ā± S.E., 0.10 Ā± 0.004 d -1 ) throughout the study. Most likely, distinct rate processes between SPM- and non-impacted assemblages reflected short-term compositional (and corresponding physiological) variations due to infusion of meroplankton and/or tributary-derived phytoplankton. Overall, resuspension appears to have little, if any, long-term impact upon the structure and function of the lakeā€™s phytoplankton.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41735/1/10452_2004_Article_5149255.pd

    Testing for Fictive Learning in Decision-Making Under Uncertainty

    Get PDF
    We conduct two experiments where subjects make a sequence of binary choices between risky and ambiguous binary lotteries. Risky lotteries are deļ¬ned as lotteries where the relative frequencies of outcomes are known. Ambiguous lotteries are lotteries where the relative frequencies of outcomes are not known or may not exist. The trials in each experiment are divided into three phases: pre-treatment, treatment and post-treatment. The trials in the pre-treatment and post-treatment phases are the same. As such, the trials before and after the treatment phase are dependent, clustered matched-pairs, that we analyze with the alternating logistic regression (ALR) package in SAS. In both experiments, we reveal to each subject the outcomes of her actual and counterfactual choices in the treatment phase. The treatments diļ¬€er in the complexity of the random process used to generate the relative frequencies of the payoļ¬€s of the ambiguous lotteries. In the ļ¬rst experiment, the probabilities can be inferred from the converging sample averages of the observed actual and counterfactual outcomes of the ambiguous lotteries. In the second experiment the sample averages do not converge. If we deļ¬ne ļ¬ctive learning in an experiment as statistically signiļ¬cant changes in the responses of subjects before and after the treatment phase of an experiment, then we expect ļ¬ctive learning in the ļ¬rst experiment, but no ļ¬ctive learning in the second experiment. The surprising ļ¬nding in this paper is the presence of ļ¬ctive learning in the second experiment. We attribute this counterintuitive result to apophenia: ā€œseeing meaningful patterns in meaningless or random data.ā€ A reļ¬nement of this result is the inference from a subsequent Chi-squared test, that the eļ¬€ects of ļ¬ctive learning in the ļ¬rst experiment are signiļ¬cantly diļ¬€erent from the eļ¬€ects of ļ¬ctive learning in the second experiment

    Analyses of Water Samples From the Deepwater Horizon Oil Spill: Documentation of the Subsurface Plume

    Get PDF
    Surface and subsurface water samples were collected in the vicinity of the Deepwater Horizon (DWH) wellhead in the Gulf of Mexico. Samples were extracted with dichloromethane and analyzed for a toxic component, polycyclic aromatic hydrocarbons (PAHs), using total scanning fluorescence (TSF) and by gas chromatography/mass spectrometry (GC/MS). An aliquot of fresh, floating oil from a surface sample was used as a DWH oil reference standard. Twelve of 19 samples collected from 24 May 2010 to 6 June 2010 on the R/V Walton Smith cruise contained TSF maximum intensities above background (0.7 Āµg L ƀ1 based on 1 L sample size). These 12 samples had total petroleum hydrocarbon (TPH) concentrations as measured by quantitative gas chromatography flame ionization detector (FID) ranging from 2 to 442 Āµg L ƀ1 . Quantitative GC/MS analysis of these 12 samples resulted in total PAH concentrations ranging from 0.01 to 59 Āµg L ƀ1 . Low molecular weight, more water-soluble naphthalene and alkylated naphthalene dominated the PAH composition patterns for 11 of the 12 water samples. Sample 12 exhibited substantially reduced concentrations of naphthalenes relative to other PAH compounds. The total PAH concentrations were positively correlated (R 2 = 0.80) with the TSF maximum intensity (MI). TSF is a simple, rapid technique providing an accurate prediction of the amount of PAH present in a sample. TSFderived estimates of the relative contribution of PAH present in the oil provided evidence that PAH represented~10% of the higher molecular weight TPH. The subsurface oil plume was confirmed by the analyses of discrete water samples for TSF, TPH, and PAH

    Characterization of Subsurface Polycyclic Aromatic Hydrocarbons at the Deepwater Horizon Site

    Get PDF
    Here, we report the initial observations of distributions of polycyclic aromatic hydrocarbons (PAH) in subsurface waters near the Deepwater Horizon oil well site (also referred to as the Macondo, Mississippi Canyon Block 252 or MC252 well). Profiles of in situ fluorescence and beam attenuation conducted during 9-16 May 2010 were characterized by distinct peaks at depths greater than 1000 m, with highest intensities close to the wellhead and decreasing intensities with increasing distance from the wellhead. Gas chromatography/mass spectrometry (GC/MS) analyses of water samples coinciding with the deep fluorescence and beam attenuation anomalies confirmed the presence of polycyclic aromatic hydrocarbons (PAH) at concentrations reaching 189 Ī¼g Lāˆ’1 (ppb). Subsurface exposure to PAH at levels considered to be toxic to marine organisms would have occurred in discrete depth layers between 1000 and 1400 m in the region southwest of the wellhead site and extending at least as far as 13 km
    • ā€¦
    corecore