4 research outputs found

    In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes

    Get PDF
    In this study, paclitaxel (PTX)-loaded pH-responsive niosomes modified with ergosterol were developed. This new formulation was characterized in terms of size, morphology, encapsulation efficiency (EE), and in vitro release at pH 5.2 and 7.4. The in vitro efficacy of free PTX and niosome/PTX was assessed using MCF7, Hela, and HUVEC cell lines. In order to evaluate the in vivo efficacy of niosomal PTX in rats as compared to free PTX, the animals were intraperitoneally administered with 2.5 mg/kg and 5 mg/kg niosomal PTX for two weeks. Results showed that the pH-responsive niosomes had a nanometric size, spherical morphology, 77% EE, and pH-responsive release in pH 5.2 and 7.4. Compared with free PTX, we found markedly lower IC50s when cancer cells were treated for 48 h with niosomal PTX, which also showed high efficacy against human cancers derived from cervix and breast tumors. Moreover, niosomal PTX induced evident morphological changes in these cell lines. In vivo administration of free PTX at the dose of 2.5 mg/kg significantly increased serum biochemical parameters and liver lipid peroxidation in rats compared to the control rats. The situation was different when niosomal PTX was administered to the rats: the 5 mg/kg dosage of niosomal PTX significantly increased serum biochemical parameters, but the group treated with the 2.5 mg/kg dose of niosomal PTX showed fewer toxic effects than the group treated with free PTX at the same dosage. Overall, our results provide proof of concept for encapsulating PTX in niosomal formulation to enhance its therapeutic efficacy. [Figure not available: see fulltext.

    A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells

    No full text
    Hydrophobin-1 (HFB-1) found on the surface of fungal spores, plays a role in the lack of antigen recognition by the host immune system. The present study aimed to evaluate the potential application of HFB-1 for the delivery of doxorubicin (Dox) into different cell lines. Coating the surface of niosomes (Nio) with HFB-1 leads to the hypothesis that this protein can confer protection against in vivo immune-system recognition and prevent the immune response. Thus, HFB-1 could become a promising alternative to polyethylene glycol (PEG). Here, HFB-1�coated niosome loaded with doxorubicin (Dox) based on Span 40, Tween 40 and cholesterol was prepared and compared with the PEG-coated niosome. Physicochemical characteristics of the prepared formulations in terms of size, zeta potential, polydispersity index (PDI), morphology, entrapment efficiency (EE), and release rate were evaluated at different pH levels (2, 5.2, and 7.4). In the end, the in vitro cytotoxicity assay was performed on four different cancer cell lines namely A549, MDA-MB-231, C6 and PC12 in addition to one control cell line (3 T3) to ensure the formulation's selectivity against cancer cells. Results showed that the niosomes coated with HFB-1 presented better size distribution, higher EE, more sustained release profile, enhanced biocompatibility and improved anticancer effects as compared to the PEG-coated niosomes. Interestingly, the viability percentage of the control cell line was higher than different cancer cells when treated with the formulations, which indicates the higher selectivity of the formulation against cancer cells. In conclusion, loading the niosomes with Dox and coating them with HFB-1 enhanced their efficacy and selectivity toward cancer cells, presenting a promising drug delivery system for sustained drug release in cancer treatment. © 2020 Elsevier B.V
    corecore