6 research outputs found
Tinospora cordifolia extract prevents cadmium-induced oxidative stress and hepatotoxicity in experimental rats
Background: Cadmium (Cd) pollution is of serious concern due to its toxic effects in both humans and animals. The study investigates the protective effect of Tinospora cordifolia stem methanolic extract (TCME) on Cd induced hepatotoxicity. Objective(s): The objective of the study was to explore the hepatoprotective effects of T. cordifolia extract. Materials and methods: Rats were administered orally with Cd (5 mg/kg) and TCME (100 mg/kg) for 28 days. At the end of the treatment period, serum and liver tissues homogenates were subjected to biochemical analysis. Results: Cd treated rats showed increased activities of the serum marker enzymes of liver damage such as AST and ALT along with increased levels of LPO and protein carbonyl content in liver tissues. Cd treatment also leads to decreased activities of endogenous antioxidants (SOD, CAT, GSH, GPx and GST), membrane ATPases (Na+K+ATPase, Ca2+ATPase and Mg2+K+ATPase) and the tissue glycoprotein levels (hexose, fucose, hexosamine and sialic acid). Histological analysis revealed vacuolar degeneration of hepatocytes with focal necrosis upon Cd administration. TCME co-treatment restored the biochemical and histological alterations caused by Cd intoxication to near normal levels. Conclusion: The results of the present investigation reveal the hepatoprotective nature of T. cordifolia against Cd induced hepatotoxicity. Keywords: Cadmium, Oxidative stress, Tinospora cordifolia, Hepatotoxicity, Antioxidan
Modulatory effect of Tinospora cordifolia extract on Cd-induced oxidative stress in Wistar rats
Background: Cadmium (Cd), a nonessential heavy metal, is a major environmental and public health concern. Oxidative stress plays an important role in Cd-induced kidney dysfunction. Tinospora cordifolia, a medicinal plant rich in phytochemicals, possesses antioxidant activity. The objective of the present study was to assess the protective effect of Tinospora cordifolia-stem methanolic extract (TCE) on Cd-induced nephrotoxicity in Wistar rats.
Methods: Male Wistar rats were administered ∼5 mg/kg body weight Cd orally and 100 mg/kg body weight TCE for 28 days. At the end of Cd and TCE treatment, biochemical assays were performed in serum and tissue homogenate.
Results: Cd-induced oxidative stress in the kidney resulted in increased levels of lipid peroxidation and protein carbonyl content with a significant decrease in cellular antioxidants, such as reduced GSH, SOD, CAT, GPX, and GST. Cd-induced nephrotoxicity was further confirmed by marked changes in the histology of the kidney and increased levels of kidney markers. Additionally, Cd-treated rats showed alterations in membrane-bound ATPase activity and decreased levels of tissue glycoproteins. Cotreatment with TCE considerably reduced the biochemical alterations in serum and renal tissue induced by Cd, and also restored ATPase activity and glycoproteins to near normal levels.
Conclusion: Our results suggested that TCE with its antioxidant effect offered cytoprotection against Cd-induced toxicity in kidneys by restoring the altered cellular antioxidants and renal markers. TCE treatment for 28 days reversed ATPase activity and tissue glycoprotein levels. These results revealed the protective effect of TCE on Cd-induced toxicity in kidneys and oxidative stress
Neuroprotective Role of Phytochemicals
Neurodegenerative diseases are normally distinguished as disorders with loss of neurons. Various compounds are being tested to treat neurodegenerative diseases (NDs) but they possess solitary symptomatic advantages with numerous side effects. Accumulative studies have been conducted to validate the benefit of phytochemicals to treat neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this present review we explored the potential efficacy of phytochemicals such as epigallocatechin-3-galate, berberin, curcumin, resveratrol, quercetin and limonoids against the most common NDs, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). The beneficial potentials of these phytochemicals have been demonstrated by evidence-based but more extensive investigation needs to be conducted for reducing the progression of AD and PD
Tinospora cordifolia extract attenuates cadmium-induced biochemical and histological alterations in the heart of male Wistar rats
[[abstract]]Persistence of cadmium (Cd) in the environment causes serious ecological problems. Tinospora cordifolia is a medicinal herb used in Ayurveda for treating various metabolic disorders and toxic conditions. The present study investigates the protective effect of T. cordifolia stem methanolic extract (TCME) on a heavy metal, Cd-induced cardiotoxicity in male Wistar rats. Male albino Wistar rats were divided into four groups (n = 6). The animals after treatment for 28 days with Cd and TCME were analysed for biochemical and histological changes in the serum and heart tissues. Cd induced lipid peroxidation and protein carbonylation was significantly reduced by TCME. TCME also reduced the histological alterations induced by Cd treatment in the heart tissues with diminished loss of myocardial fibers. Administration of TCME effectively prevented the altered levels of serum marker enzymes (creatine kinase and lactate dehydrogenase), antioxidants, such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and glutathione-S-transferase, and glycoproteins contents such as hexose, hexoseamine, fucose, and sialic acid by Cd intoxication. TCME also offered protection against the change in levels of Na+K+ATPase, Mg2+ATPase and Ca2+ATPase activities against Cd toxicity. The study suggests TCME as a potent cardioprotective agent against Cd induced toxicity.
Keywords
CadmiumTinospora cordifoliaOxidative stressHeartAntioxidant enzyme