210 research outputs found
Recommended from our members
Bio-Inspired Active Skins for Surface Morphing.
Mechanical metamaterials that leverage precise geometrical designs and imperfections to induce unique material behavior have garnered significant attention. This study proposes a Bio-Inspired Active Skin (BIAS) as a new class of instability-induced morphable structures, where selective out-of-plane material deformations can be pre-programmed during design and activated by in-plane strains. The deformation mechanism of a unit cell geometrical design is analyzed to identify how the introduction of hinge-like notches or instabilities, versus their pristine counterparts, can pave way for controlling bulk BIAS behavior. Two-dimensional arrays of repeating unit cells were fabricated, with notches implemented at key locations throughout the structure, to harvest the instability-induced surface features for applications such as camouflage, surface morphing, and soft robotic grippers
Recommended from our members
Densely distributed and real-time scour hole monitoring using piezoelectric rod sensors
This study aims to validate a piezoelectric driven-rod scour monitoring system that can sense changes in scour depth along the entire rod at its instrumented location. The proposed sensor is a polymeric slender rod with a thin strip of polyvinylidene fluoride that runs through its midline. Extraction of the fundamental frequency allows the direct calculation of the exposed length (or scour depth) of the slender rod undergoing fluid flow excitation. First, laboratory validation in dry conditions is presented. Second, hydrodynamic testing of the sensor system in a soil-bed flume is discussed. Each rod was installed using a three-dimensional-printed footing designed for ease of installation and stabilization during testing. The sensors were installed in a layout designed to capture symmetric scour conditions around a scaled pier. In order to analyze the system out of steady-state conditions, water velocity was increased in stages during testing to induce different degrees of scour. As ambient water flow excited the portion of the exposed rods, the embedded piezoelectric element outputted a time-varying voltage signal. Different methods were then employed to extract the fundamental frequency of each rod, and the results were compared. Further testing was also performed to characterize the relationship between frequency outputs and flow velocity, which were previously thought to be independent. In general, the proposed driven-rod scour monitoring system successfully captured changing frequencies under varied flow conditions
Recommended from our members
Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films.
The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film's electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film's bulk conductivity was characterized by finite element modeling
Recommended from our members
Distributed Strain Sensing Using Electrical Time Domain Reflectometry With Nanocomposites
Noncontact Electrical Permittivity Mapping and pH-Sensitive Films for Osseointegrated Prosthesis and Infection Monitoring.
The objective of this paper is to develop a noncontact, noninvasive system for detecting and monitoring subcutaneous infection occurring at the tissue and osseointegrated prosthesis interface. It is known that the local pH of tissue can change due to infection. Therefore, the sensing system integrates two parts, namely, pH-sensitive thin films that can be coated onto prosthesis surfaces prior to them being implanted and an electrical capacitance tomography (ECT) algorithm that can reconstruct the spatial permittivity distribution of a region of space in a noncontact fashion. First, a thin film pH sensor was fabricated by spray coating, and tests confirmed that the film exhibited changes in its permittivity due to pH. Second, the ECT forward and inverse problems were implemented. Third, an aluminum rod was employed as a representative phantom of an osseointegrated prosthesis and then spray coated with the pH sensor. Finally, the film-coated phantom was immersed in different pH buffers, dried, and subjected to ECT interrogation and spatial permittivity reconstruction. The results validated that ECT was able to detect and localize permittivity variations correlated to pH changes
Monitoring osseointegrated prosthesis loosening and fracture using electrical capacitance tomography.
A noncontact, noninvasive, electrical permittivity imaging technique is proposed for monitoring loosening of osseointegrated prostheses and bone fracture. The proposed method utilizes electrical capacitance tomography (ECT), which employs a set of noncontact electrodes, arranged in a circular fashion around the imaging area, for electrical excitations and measurements. An inverse reconstruction algorithm was developed and implemented to reconstruct the electrical permittivity distribution of the interrogated region from boundary capacitance measurements. In this study, osseointegrated prosthesis phantoms were prepared using plastic rods and Sawbone femur specimens, which were subjected to prosthesis loosening and fracture monitoring tests. The results demonstrated that the spatial location and extent of prosthesis loosening and bone fracture could be estimated from the ECT reconstructed permittivity maps. The resolution of the reconstructed images was further enhanced by a limited region tomography algorithm, and its accuracy in terms of identifying the severity, location, and shape of bone fracture was also investigated and compared with conventional full region tomography
Recommended from our members
Surface Morphing of Geometrically Patterned Active Skins
AbstractNature is ripe with biological organisms that can interact with its surroundings to continuously morph their surface texture. Many attempts have been made to optimize artificial surfaces depending on operational needs; however, most of these architected materials only focus on enhancing a specific material property or functionality. This study introduces a new class of instability-induced morphable structures, herein referred to as “Active Skins”, which enables on-demand, reversible, surface morphing through buckling-induced feature deployment. By taking advantage of a preconceived auxetic unit cell geometrical design, mechanical instabilities were introduced to facilitate rapid out-of-plane deformations when in-plane strains are applied. Here, these notches were introduced at judiciously chosen locations in an array of unit cells to elicit unique patterns of out-of-plane deformations to pave way for controlling bulk Active Skin behavior. These purposefully designed imperfections were employed for selectively actuating them for applications ranging from camouflage to surface morphing to soft robotic grippers
- …