8,408 research outputs found

    High power (60mW) single frequency erbium:ytterbium codoped fiber laser

    No full text
    The characteristics of a high power Er3+:Yb3+ single frequency fiber laser pumped at 980nm are reported. The device gives 60mW output power with RIN 10MHz and linewidth 500kHz. At low output powers (< 30mW) the slope efficiency is as high as 25%, falling to 12% at higher powers, the saturation behaviour is related to a bottleneck effect due to the finite Yb-Er transfer rate. Improved performance can be obtained using new fibers with an increased rare-earth concentration which show negligible signs of erbium clustering

    Noise Predictions for STM in Systems with Local Electron Nematic Order

    Get PDF
    We propose that thermal noise in local stripe orientation should be readily detectable via STM on systems in which local stripe orientations are strongly affected by quenched disorder. Stripes, a unidirectional, nanoscale modulation of electronic charge, are strongly affected by quenched disorder in two-dimensional and quasi-two-dimensional systems. While stripe orientations tend to lock to major lattice directions, dopant disorder locally breaks rotational symmetry. In a host crystal with otherwise C4C_4 rotational symmetry, stripe orientations in the presence of quenched disorder map to the random field Ising model. While the low temperature state of such a system is generally a stripe glass in two dimensional or strongly layered systems, as the temperature is raised, stripe orientational fluctuations become more prevalent. We propose that these thermally excited fluctuations should be readily detectable in scanning tunneling spectroscopy as {\em telegraph noise} in the high voltage part of the local I(V)I(V) curves. We predict the spatial, temporal, and thermal evolution of such noise, including the circumstances under which such noise is most likely to be observed. In addition, we propose an in-situ test, amenable to any local scanning probe, for assessing whether such noise is due to correlated fluctuations rather than independent switchers.Comment: 8 pages, 8 figure
    • 

    corecore