7 research outputs found

    Mechanism and assessment of spin transfer torque (STT) based memory

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 61-70).When a sufficient current density passes through the MTJ, the spin-polarized current will exert a spin transfer torque to switch the magnetization of the free layer. This is the fundamental of the novel write mechanism in STT-RAM, current-induced magnetization switching. It allows STT-RAM to have a smaller cell size and write current than MRAM, and also capable of what MRAM promises: fast, dense, and non-volatile. A technological assessment was conducted to verify the claims of STT-RAM by understanding the physical principles behind it. A comparison of performance parameters in various memory technologies was also made. STT-RAM scores well in all aspect except in the size of the memory cell. The high current density (>10⁶ A/cm²) sets the lower limit of the size of the driving transistor and ultimately the cost of manufacturing STT-RAM. Cost models were presented to estimate the cost of a STT-RAM based on a three mask levels fabrication process. Although much effort has been put into reducing the switching current density, there are still no easy solutions to the problem. Research and development of STT-RAM must show success in a very near future or else STT-RAM will follow the step of its predecessor, MRAM: surviving in the niche market.by Iong Ying Loh.M.Eng

    Development of Mechanical Driven DNA Nanomotors

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    BIO-PRINTING OF MULTI-HYDROGEL SCAFFOLDS FOR TISSUE ENGINEERING

    No full text
    Master'sMASTER OF SCIENCE IN ADVANCED MATERIALS FOR MICRO- & NANO- SYSTEM

    Mechanosensing Potentials Gate Fuel Consumption in a Bipedal DNA Nanowalker

    No full text
    A bipedal DNA nanowalker was recently reported to convert chemical energy into directional motion autonomously and efficiently. To elucidate its chemomechanical coupling mechanisms, three-dimensional molecular modeling is used to obtain coarse-grained foot-track binding potentials of the DNA nanowalker via unbiased and biased sampling techniques (for the potentials’ basin and high-energy edges, respectively). The binding state that is protected against fuel-induced dissociation responds asymmetrically to forward versus backward forces, unlike the unprotected state, demonstrating a mechanosensing capability to gate fuel binding. Despite complex DNA mechanics, the foot-track potential exhibits a surprisingly neat three-part profile, offering some general guidelines to rationally design efficient nanowalkers. Subsequent modeling of the bipedal walker attached to the track gives estimates of the free energy for each bipedal state, showing how the mechanosensing foot-track binding breaks the symmetry between the rear and front feet, enabling the rear foot to be selectively dissociated by fuel and generating efficient chemomechanical coupling

    From bistate molecular switches to self-directed track-walking nanomotors

    No full text
    Track-walking nanomotors and larger systems integrating these motors are important for wide real-world applications of nanotechnology. However, inventing these nanomotors remains difficult, a sharp contrast to the widespread success of simpler switch-like nanodevices, even though the latter already encompasses basic elements of the former such as engine-like bistate contraction/extension or leg-like controllable binding. This conspicuous gap reflects an impeding bottleneck for the nanomotor development, namely, lack of a modularized construction by which spatially and functionally separable "engines" and "legs" are flexibly assembled into a self-directed motor. Indeed, all track-walking nanomotors reported to date combine the engine and leg functions in the same molecular part, which largely underpins the device-motor gap. Here we propose a general design principle allowing the modularized nanomotor construction from disentangled engine-like and leg-like motifs, and provide an experimental proof of concept by implementing a bipedal DNA nanomotor up to a best working regime of this versatile design principle. The motor uses a light-powered contraction-extension switch to drive a coordinated hand-over-hand directional walking on a DNA track. Systematic fluorescence experiments confirm the motors directional motion and suggest that the motor possesses two directional biases, one for rear leg dissociation and one for forward leg binding. This study opens a viable route to develop track-walking nanomotors from numerous molecular switches and binding motifs available from nanodevice research and biology

    Biomimetic autonomous enzymatic nanowalker of high fuel efficiency

    No full text
    Replicating efficient chemical energy utilization of biological nanomotors is one ultimate goal of nanotechnology and energy technology. Here, we report a rationally designed autonomous bipedal nanowalker made of DNA that achieves a fuel efficiency of less than two fuel molecules decomposed per productive forward step, hence breaking a general threshold for chemically powered machines invented to date. As a genuine enzymatic nanomotor without changing itself nor the track, the walker demonstrates a sustained motion on an extended double-stranded track at a speed comparable to previous burn-bridge motors. Like its biological counterparts, this artificial nanowalker realizes multiple chemomechanical gatings, especially a bias-generating product control unique to chemically powered nanomotors. This study yields rich insights into how pure physical effects facilitate harvest of chemical energy at the single-molecule level and provides a rarely available motor system for future development toward replicating the efficient, repeatable, automatic, and mechanistically sophisticated transportation seen in biomotor-based intracellular transport but beyond the capacity of the current burn-bridge motors
    corecore