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ABSTRACT 
 
When a sufficient current density passes through the MTJ, the spin-polarized current will exert a spin 
transfer torque to switch the magnetization of the free layer. This is the fundamental of the novel 
write mechanism in STT-RAM, current-induced magnetization switching. It allows STT-RAM to have a 
smaller cell size and write current than MRAM, and also capable of what MRAM promises: fast, dense, 
and non-volatile. 
 
A technological assessment was conducted to verify the claims of STT-RAM by understanding the 
physical principles behind it. A comparison of performance parameters in various memory 
technologies was also made. STT-RAM scores well in all aspect except in the size of the memory cell. 
The high current density (>106 A/cm2) sets the lower limit of the size of the driving transistor and 
ultimately the cost of manufacturing STT-RAM. Cost models were presented to estimate the cost of a 
STT-RAM based on a three mask levels fabrication process. Although much effort has been put into 
reducing the switching current density, there are still no easy solutions to the problem. Research and 
development of STT-RAM must show success in a very near future or else STT-RAM will follow the 
step of its predecessor, MRAM: surviving in the niche market. 
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PART I   THE TECHNOLOGY 

 

1. Introduction 

The ability to manipulate spin degree of freedom of conduction electrons, in addition to charge, 

inspired an exciting new field of spintronics [1]. Spintronics, a joint word of spin and electronics, was 

founded after giant magnetoresistance (GMR) effect had been discovered [2]. GMR is the change of 

resistance that depends on the relative orientation of the magnetization of two ferromagnetic (FM) 

layers. It was not surprising that these GMR structures have been widely used as an element in the 

read head of hard disk drive [3]. Nevertheless, a higher magnetoresistance response is still demanded 

to further expand the application of GMR. This eventually led to another big step in spintronics, the 

discovery of magnetic tunnel junction (MTJ). MTJ exhibits the behavior of tunneling 

magnetoresistance (TMR) with a much higher MR ratio than the GMR structure. 

The development of spintronics coincides with the changing period of semiconductor memories. In 

this information era, the demand for information storage is ever increasing but the devices that hold 

the memories become even more compact. Moreover, cost effectiveness permits only little change 

on the existing complementary metal oxide silicon (CMOS) processing for a new memory technology 

[4]. Combining these two traits, an embedded and more CMOS-compatible memory is more 

preferable. However, the most important factor that triggers the search for a new memory 

technology is the inherent scalability issue in the current memory technologies (beyond 40 nm for 

DRAM [5] and beyond 22 nm for NAND flash [6]). Therefore, the reason for implementing MTJ as the 

magnetic element in a magnetic memory device, or better known as magnetic random access 

memory (MRAM), becomes obvious. MRAM is said to be capable of speed of static random access 

memory (SRAM), the density of dynamic random access memory (DRAM), the non-volatility benefits 

of flash, and the unlimited endurance [7]. (SRAM is the fastest memory in the market and DRAM has 

reasonable capacity without comprising the speed.) In other words, MRAM will be the universal 

memory. However, after years of effort, the intrinsic disadvantages of MRAM, such as large cell size 

and high write current, greatly forbids it to be widely commercialized [7]. 

Although spin transfer torque (STT) is initially regarded as the cause of noise in recording technology 

[8], researchers found that it can be manipulated for producing a current-induced magnetization 



7 

switching memory device. This immediately solves the high write current and scaling issue in MRAM. 

Although applications of STT effect are not limited to only memory devices (for example, spin-torque 

diode [9] and nano-oscillator [10]), a STT based random access memory (STT-RAM) is more vital for 

the reasons discussed above. Therefore, a technological assessment on STT-RAM is crucial, especially 

when the technology is not commercially available. This thesis will first discuss the necessary physics 

and mechanism of GMR and TMR. It is important to understand some of the basis that is similar with 

STT-RAM. In chapter two, the process of current-induced magnetization switching is examined. The 

current will cause the electrons to precess around the local magnetization that ultimately causes 

magnetization switching at a given condition, namely sufficient switching current density. The 

switching current density depends on several parameters, which is either material or geometrical 

effect. The switching speed then depends on the switching current density. Together with other 

conducting elements, MTJ forms the basic configuration of a STT-RAM memory cell. The read and 

write mechanisms will be discussed as well. In the final section of chapter two, the memory cell size is 

shown to be directly related to the switching current density. The following of the thesis will switch 

its focus to evaluate the market and implementation of STT-RAM. Comparison among the memory 

technologies is included because it is crucial to judge the standpoint of STT-RAM. Then, the 

application and memory market share that are associated to STT-RAM is explored. The size of the 

market allows us to determine whether STT-RAM should be invested at the beginning. The influence 

of failed-to-deliver MRAM on STT-RAM is also investigated. The fabrication process will be discussed 

in chapter four. This will include the estimation of the fabrication cost using two different methods. 

Search on STT-RAM related patents will reveal whether the value of fabricating a STT-RAM is all taken. 

From here, the business model to venture into the STT-RAM market as well as the decision to pursue 

STT-RAM or otherwise is made. 

 

1.1. Giant Magnetoresistance (GMR) 

Before furthering the discussion of GMR effect, it is important to understand some of the spin 

nomenclatures since there are often confusion between the direction of spin and magnetization. In 

metals, electron spin is opposite in direction with magnetic moment [11]. Majority-spin or spin-up 

electrons are electrons with moment parallel (spin antiparallel) to the magnetization of the 

ferromagnetic (FM) layer, while minority-spin or spin-down electrons are electrons with moment 
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antiparallel (spin parallel) to the magnetization. When a current is said to be spin-polarized, it means 

most of the electrons are either spin-up or spin-down. 

 

Figure 1 The first two demonstration of GMR effect. The horizontal and vertical axes are the 

applied magnetic field and MR ratio, respectively. (a) The larger curve the GMR effect. (b) The field 

is in-plane with the current in a and b, but perpendicular in c. Taken from [12,13]. 

The simplest structure for the observation of GMR effect consists of two FM layers sandwiching a 

spacer layer [2]. FM materials show magnetism during the presence of an external magnetic field and 

the magnetism vanishes if the field is taken away. Typical FM materials are iron (Fe), nickel (Ni), 

cobalt (Co) and their alloys, with or without other addition: permalloy (NiFe), CoFeB, CoFe, and so on. 

The spacer layer in a GMR structure is made of nonmagnetic (NM) metals, such as copper (Cu). GMR 

effect is first observed in two configurations: Fe|Cr|Fe trilayer [12] and Fe|Cr super lattice [13]. 

Chromium (Cr), an antiferromagnetic (AFM) material, is used in the above mentioned configurations. 

AFM materials have spin ordering that can be visualize as the following figure: 

 

Figure 2 Spin ordering of AFM materials below Neel temperature. Cr, FeMn and NiO are commonly 

used antiferromagnetic materials. 
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The individual thickness of the multilayers that displayed GMR effect must be comparable to the 

mean free path of electrons or less [2], typically a few nanometers [10]. When a current pass through 

the trilayer, the resistance (RAP) of the trilayer becomes high if the relative magnetizations of the two 

FM layers are in antiparallel; the resistance (RP) is low if the magnetizations are in parallel. This 

phenomenon is called the GMR effect. One of the two FM layers has its magnetization fixed (referred 

as the fixed or pinned layer) while the magnetization of the other FM layer is free to rotate (free 

layer). The FM|NM|FM layered structure soon became the foundation for the continuous 

development of this field. 

The key mechanism of GMR effect is spin dependent scattering. Mott [14] first proposed the two-

current model to explain this phenomenon. In this model, there are two independent conducting 

channels, which means that the spin-up and spin-down electrons have different scattering probability 

[15,16]. This is because the d-bands in FM materials are spin-split, thus k the densities of states are 

different for both spin-up and spin-down electrons [15]. The unoccupied d-states will act as scattering 

centers, since they are situated near the Fermi surface in transition metals. The result is spin-up 

electrons will scatter less than spin-down electrons. A better GMR effect means a higher MR ratio 

and MR ratio is defined by 

(RAP − RP )

RP
=
∆R

RP
. 

( 1 ) 

 

Figure 3 Left: CIP-GMR. Right: CPP-GMR. The arrows represent the movement of electrons. Taken 

from [16]. 
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There are two versions of GMR structures: current-in-plane (CIP) and current-perpendicular-to-plane 

(CPP) (Figure 3). The name of CIP indicates the flow of current is along the plane of multilayer, 

whereas the direction of current is normal to the plane of multilayer in CPP structure. In a CIP 

structure, it is important that the mean free path is longer than the total thickness of the layers. In 

the contrary, spin diffusion length is more important in the case of CPP structure. Spin diffusion 

length is the distance of the electrons travelled without spin flipping (spin is conserved). 

 

1.1.1. Spin accumulation in CPP-GMR 

Valet and Fert in 1993 [17] pointed out that in CPP geometry, the net spin transport across the 

FM|NM|FM structure causes spin accumulation in the area near the interface, in contrast to CIP 

geometry. Therefore, spin accumulation effect is the key difference between CIP and CPP geometry. 

Consider an antiparallel magnetizations, the electrons will be spin-polarized by the fixed layer, which 

the case of more majority-spin electrons than minority-spin electrons is assumed. At the far right of 

the FM|NM interface, the number of spin-up and spin-down electrons are equal due to spin flipping. 

Consequently, at the first FM|NM interface, more spin-up electrons will flip their spins, causing an 

accumulation of spin-up electrons in the area near the interface [2]. Spin-up electrons injected into 

the NM layer will reduce to a minimum, but not zero since the thickness of FM layer is thin. The spin-

up electrons again accumulates at the second NM|FM interface because the majority-spin electrons 

became minority-spin electrons that will get scattered in the second FM layer. 

In summary, spin accumulation and spin flip scattering changes the electric field and thus induces 

potential drops at the interfaces. The extra potential drop will introduce interface resistance, which 

helps to enhance the MR ratio when compared to a CIP geometry. All the discussions above are valid 

in the limit of tF, tN << lsd and λ < lsd, where tF, tN, λ and lsd is thickness of FM layer, thickness of NM 

layer, mean free path and spin diffusion length, respectively. This discussion is also applicable to 

parallel magnetizations configuration. The result can further be generalized to include both bulk and 

interface spin dependent scattering. This theory is later extended to any multilayered structures 

including spin valves with synthetic free layers, laminated free and pinned layers, and dual spin valves 

[18]. This consideration also includes spin flipping in all layers. 
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1.2. Tunneling Magnetoresistance (TMR) 

The main difference between TMR and GMR is TMR uses a magnetic tunnel junction (MTJ) structure. 

MTJ is very similar to GMR structure, with the exception of the metallic spacer layer is replaced by an 

insulating layer. The insulating layer is also known as tunnel barrier; the materials are usually Al2O3 or 

MgO. MTJ has a CPP geometry, which means the current flows in the direction normal to the plane of 

multilayer. Therefore, the theories that applied to CPP geometry also applies to MTJ, in some extent. 

 

Figure 4 Illustration of TMR effect using band structure. Adapted from [19]. 

Julliere in 1975 first observed the TMR effect using Fe|Ge|Co structure with germanium (Ge) as the 

insulating barrier (10-15 nm) [20]. In Julliere’s work, the MR ratio (or conductance ratio in Julliere’s 

work but it is equivalent) is given as 

2P1P2

1 − P1P2
 . 

( 2 ) 

P1 and P2 are the spin polarization of the FM materials (Pα), which is defined as 

Dα↑ − Dα↓

Dα↑ + Dα↓
;  α = 1,2 

( 3 ) 

with α=1 (2) refers to the first (second) FM layer. Dα↑ and Dα↓ denote the density of states at Fermi 

energy (EF) for the majority-spin and minority-spin electrons, respectively. In other words, Pα value 

depends on the tunneling density of states of electrons. In parallel magnetizations, electrons in FM 
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layer will find more empty states to tunnel through the barrier than in antiparallel magnetizations 

(Figure 4). The MR ratio calculated using experimental P values fits well to the experimental MR ratio 

[19]. However, the theoretical P values derived from band calculations using Julliere’s model does not 

agree with experimental P values. Nevertheless, one important point can still be taken from this 

model: better spin polarization of FM materials will increase the MR ratio. 

A more complicated model involves the transmission of Bloch states. Various Bloch states can tunnel 

incoherently through the amorphous barrier, such as Al2O3 [19]. With crystalline MgO barrier [19], 

the decay rates for all other Bloch states are high except for one that tunnels coherently. This is due 

to the matching of Bloch states of the FM layer and the insulating barrier. This remaining Bloch state 

has net spin polarization of 100%; therefore, MgO-MTJ has higher MR ratio than Al-O-MTJ. For 

further reading, please refer to [21,22]. 

 

Figure 5 Improvement on MR ratio of different MTJ configuration at room temperature. Adapted 

from [19]. 

The highest MR ratio of amorphous Al-O MTJ is around 70% at room temperature [2,19]. 

Experimental work of MgO-based MTJ does not demonstrate MR ratio which is significantly higher 

than Al-O-based MTJ until 2004 [23]. In this work, Parkin et al. presented CoFe|MgO-MTJ of MR ratio 

over 200% at room temperature. The trend of increment of the MR ratio in MTJ over the years is 

shown in Figure 5. The highest MR ratio obtainable to date is 604% at room temperature [24]. 
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Another point to note, the MR ratio of MTJ generally decreases with increasing magnitude of biasing 

voltage, but the bias dependence of STT in MTJ is still inconclusive and in research [25,26]. 

 

1.3. GMR, TMR and STT 

The voltage output of GMR and MTJ structure is proportional to the MR ratio and the current density: 

∆V =  k  J  ∆R  A . 

( 4 ) 

J is the current density; ∆R is the resistance change when the magnetizations switch from parallel to 

antiparallel or the opposite (see section 1.1); A is the area involved that the current flows 

perpendicularly through it; and k is the efficiency. ∆R and A is commonly written together as the 

resistance change-area product (∆RA), and always corresponds to MR ratio. Therefore, it can be seen 

that high MR ratio is required to have a readable voltage output. CIP-GMR, CPP-GMR and TMR 

devices has MR ratio in increasing order.  

As the size decreases, the performance of CIP-GMR structure degrades due to edge effect, since the 

electrical contacts are connected to the side of the CIP-GMR structure [8,27]. CPP geometry, 

including CPP-GMR and MTJ structure, does not have this problem as the leads are connected on the 

top and bottom. This provides a much better geometry for inspection of spin injection and spin 

accumulation, the underlying concepts that leads to STT. Moreover, CPP geometry has higher MR 

ratio than CIP-GMR because averagely more electrons travel from one end to the other (refer to 

Figure 3) [2]. As mentioned earlier, STT, at first, is sort of a side effect of the current density when 

dealing GMR or TMR effect, but the manipulation of STT eventually leads to current-induced 

magnetization switching, which helps to solve scaling difficulties and high current write current found 

in magnetic random access memory (MRAM). 
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2. Current-induced Magnetization Switching 

2.1. Overview 

It is the net spin transport (also resulted spin accumulation, as discussed in section 1.1.1) found in 

CPP geometry that ultimately gives rise to STT. STT then becomes the fundamental principle that lies 

behind current-induced magnetization switching or reversal. This effect is first predicted 

independently by Slonczewski [28] and Berger [29] in 1996 and experimentally shown [30-32] with 

point contact or nanopillar geometry [10]. Various aspects of the current-induced magnetization 

switching and STT, including the spin precession and switching current density, are discussed here. 

 

2.2. The process 

Consider a trilayer of fixed and free FM layers separated by a NM spacer layer (Figure 6) [33]. The 

magnetization of the fixed layer is assumed to be pinned (in real case, it is pinned by an AFM layer) 

and will not be flipped by any current density. Moreover, there is an angle θ between the 

magnetizations of two FM layers for current switching purpose. When the incoming spin orientation 

is collinear with the magnetization of the FM layer (θ=0 or π), there will be no torque exerted [34]. 

Since spin transfer torque is crucial in switching the magnetization of the free layer, therefore non-

collinearity between fixed and free layers is necessary. 

 

Figure 6 The direction of the magnetizations and spins of the electrons. The arrows show the 

direction of corresponding terms. The spacer layer is located between the fixed and free layer. The 

spacer layer is hidden and its thickness is exaggerated for visualization purpose. 
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Electrons always move in the opposite direction of the current. When current flows from the free to 

fixed layer, the s-band electrons [2] will be spin-polarized in the direction of the magnetization of the 

fixed layer. This is the first spin filtering event: majority-spin electrons, with respect to the fixed layer, 

are able to pass through the spacer layer. The minority-spin electrons accumulate in the FM layer. 

The second spin filtering event happens in the free layer. When the electrons reach the free layer, s-d 

exchange interaction occurs [2]. The electrons will align themselves along the magnetization of the 

free layer. Therefore, the spin will start to precess around the magnetization of the free layer. Since 

the precession is averaged over all electrons, transverse components of spin angular momentum 

become zero since the electrons are out of phase [35]. Due to conservation of spin angular 

momentum, the transverse components of the electron spins will be absorbed and transferred to 

magnetization of the free layer. Therefore, the same interaction also exerts a torque on the 

magnetization of free layer, making the magnetization tends to align towards the magnetization of 

the fixed layer. This torque effect is commonly known as spin transfer torque (STT). Although the 

minority-spin electrons, with respect to the free layer, will be reflected back to the fixed layer, the 

magnetization of the fixed layer will not change because this torque is not strong enough. If the 

current density is high enough, that is more than critical switching current (usually around 107 A/cm2), 

the torque applied by the spin of electrons can switch the magnetization of the free layer [34]. 

Similar situation happens when the electrons move from the free layer to the fixed layer with one 

exception. The torque exerted by the electrons that precess around the magnetization of the fixed 

layer are insufficient to switch the magnetization. The minority-spin electrons, with respect to the 

fixed layer, are reflected back to the free layer. These electrons apply torque that enough to switch 

the magnetization of the free layer antiparallel to the fixed layer. The strength of the torque is 

normally expressed as the magnitude of current density. 

 

2.3. Switching current density 

The critical current density required to cause magnetization reversal at zero temperature using 

macrospin approximation is given as [8,36-38] 
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Jc0 =  
2e

ℏ
  
α

η
  MS tF  ±Hext + HK + 2πMS −

HK⊥

2
  

( 5 ) 

or equivalently in terms of current, 

Ic0 =  
2e

ℏ
  
α

η
  MSAtF  ±Hext + HK + 2πMS −

HK⊥

2
  

( 6 ) 

where e, α, η, MS, tF, A, Hext, HK, and HK⊥ is the electron charge, damping constant, spin transfer 

efficiency, saturation magnetization of the free layer, thickness of the free layer, area of the free 

layer normal to the plane of the films, externally applied magnetic field, in-plane uniaxial anisotropy 

field and out-of-plane (perpendicular) anisotropy field of the free layer, respectively. The 

perpendicular anisotropy can be induced by interfacial anisotropy, strain field or crystalline 

anisotropy [36]. η is a function of current polarity, polarization, and the relative angle between fixed 

and free layer. The saturation magnetization arises from the demagnetizing field of the thin film 

geometry [39]. The 2πMS term (around thousands of Oersteds) is large compared to the HK term 

(hundreds of Oersteds) and thus becomes the dominating factor in determining the switching current 

density. 

Equation ( 6 ) provides insight on the means to reduce the critical current density, which its 

motivation will be made clear in section 2.6.3. Therefore, the critical current density can be reduced 

by using materials with low MS and high η [37]. For example, CoFeB with low MS [40] and high η MgO-

MTJ as described in section 1.2 is favored. Moreover, a material with a perpendicular anisotropy (HK

⊥), such as Co/Ni and Co/Pt, can be utilized to minimize the switching current density by reducing the 

effect of 2πMS term [39,41]. As seen in equation ( 6 ), Ic0 can also be reduced by making the size of 

the free layer smaller (A∙tF). However, reducing the area has a more significant effect since the 

thickness of the free layer is already on the order of few nanometers as compared to typical value of 

area (50 x 150 nm2). 
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Jc = Jc0  1 −
kBT

Ku V
ln

tp

τ0
  

( 7 ) 

At a given temperature T, the critical current decreases to the expression above. kB, Ku, V, tp, and τ0 is 

the Boltzmann constant, anisotropic constant, activation volume of free layer, current pulse width, 

and inverse of the attempt frequency (typical around 1 ns), respectively [7,37,40]. For a 10-year 

thermal stability, KuV must be over 40 times of kBT [40]. 

Reported by Diao et al. [37], the average critical current density for an AlOx-MTJ is about 6 × 106 

A/cm2 (MR ratio= 45%, cell size= 127 nm × 148 nm, pulse width= 30 ms, room temperature). For a 

MgO–MTJ, the critical switching current density is reduced to 2.2 × 106 A/cm2 (MR ratio=155%, cell 

size= 125 nm x 220 nm). The critical current density can be further reduced by structural modification. 

For example, a dual MTJ configuration, with two MgO barriers, can have critical switching current 

density as low as 1.1 × 106 A/cm2. 

If the electrons flow from the free to fixed layer, approximately 50% higher critical current is needed 

to switch the magnetization [8]. This is because when the electrons move from free to fixed layer, the 

magnetization switching is obtained by the reflection of minority-spin electrons, as opposed to the 

case when the electrons travel from fixed to free layer, which the magnetization switching is induced 

by direct spin transfer of the majority-spin electrons. This can be overcome by using a dual MTJ 

configuration. 

 

2.4. Precession of spin around local magnetization 

Provided the spin orientation is non-collinear with the magnetization of free layer, the spin of 

electrons will try to align with this local magnetization by precessing around it when the electrons 

move through the free layer (Figure 7). In FM materials, the exchange interaction is strong, and it 

causes the electrons to move a few atomic lengths for one period of precession. The FM layer 

discussed here is typically ten times the atomic length, thus the electrons will be out of phase. Since 

the electrons have different initial conditions, transverse components of spin angular momentum of 

all electrons average to zero [25,33]. The energy loss in this process can be described by the Landau-
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Lifshitz-Gilbert equation (see equation ( 8 )) [34]. As described earlier, this loss of spin angular 

momentum will be absorbed by the magnetization of the free layer due to conservation of angular 

momentum and causes the magnetization to precess around the moment of spin. This is the initial 

step for complete magnetization reversal of the free layer. 

∂𝐌

∂t
= −γ𝐌 × 𝐇𝐞𝐟𝐟 +

α

𝐌𝐬
𝐌 ×

∂𝐌

∂t
 

( 8 ) 

 

Figure 7 Two different electrons with spin s1 and s2 that precess around the local magnetization M. 

In this example, both precessions are out of phase by π. The subscript t indicates the transverse 

component of the spin. 

Consider the case for magnetic reversal of free magnetic layer with magnetization antiparallel to the 

fixed magnetic layer, and the current is applied such that STT acts against magnetic damping (Figure 8) 

[34]. The magnitude of STT depends on the magnitude of the current density applied. If the current 

density is small, the magnetization of the free layer spirals back to the direction of the magnetization 

of the fixed layer due to magnetic damping [34]. (The magnetization of the fixed layer can be 

regarded as the moment of the spin since the electrons are spin-polarized by the fixed layer.) 

However, if the current density exceeds a certain critical value, the magnetic damping becomes 

negative and the magnetization of the free layer spirals away from the fixed layer. In such case, two 

possible scenarios might result. The first possibility, if the magnetic damping increases with the 

precession angle faster than the STT, stable precession will proceed. For the second possibility, the 

precession angle will keep increasing and the magnetization will ultimately reverse or switch. 

Although the above discussion is done without magnetic anisotropic, it still hold true for thin film 

geometry, as in the case of GMR or MTJ. 
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Figure 8 (a) Direction of STT, damping, M (magnetization of free layer), and Mfixed (magnetization of 

fixed layer, along z-direction). (b) Magnetic configuration for case c to e. (c) M spirals back to z-

direction. (d) Stable precession. (e) Magnetization reversal. Adapted from [34]. 

 

2.5. Switching speed 

The switching speed depends on the duration and amplitude of the current pulse [8]. If the current 

density J>Jc0, complete magnetization reversal by precessional switching occurs as discussed in 

section 2.4 [37]. The switching speed corresponding to this operation mode is around 5-20 ns at room 

temperature [8]. If J<Jc0, the magnetization still can be reversed by assistance of thermal excitations 

but the switching speed is slow. Therefore, there is tradeoff between switching speed and magnitude 

of current density. 

In summary, the magnetization switching is a thermally activated process for long current pulse, 

whereas precessional switching occurs for very short current pulse (Figure 9) [37]. In between these 

two regions, there is an intermediate region called dynamic reversal. This region corresponds to the 

operating speed of a practical STT-RAM (3-10 ns [40]). 
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Figure 9 Three switching modes: thermal activation, dynamic reversal, and precessional switching. 

The parameters are taken as α = 0.02, HK = 500 Oe and 4πMS = 18 kOe. Taken from [37]. 

 

2.6. STT-RAM 

Although there is another form of STT based memory device, namely racetrack memory [42], which 

utilizes the movement of domain wall induced by STT, STT-RAM is closer to commercialization and 

more mature in terms of research work done. STT-RAM not only has the same advantages as MRAM, 

which is fast write and read time (in order of tens of nanoseconds), unlimited endurance, non-

volatility, low power and high tolerance to radiation and operational temperature [10,43], it also has 

added value of ease of scaling down and smaller write current as compared to MRAM (more in 

section 3.6.1). 

Let us first compare the two CPP geometries. CPP-GMR structure can reach a high current density 

required for STT easier than MTJ, due to the low resistance in metallic layer. On the other hand, MTJ 

has higher MR ratio and can have much better impedance matching (higher resistance, several kΩ 

[44]) with the complementary metal oxide semiconductor (CMOS) electronics [34]. This compatibility 

allows fast sensing and reading of MTJ by the CMOS circuitry [8,44]. Therefore, it is often to see that 

STT-RAMs nowadays are based on MgO-MTJ (highest MR ratio, see section 1.2) as the magnetic 

element, which is the unit for storing information. In the following sections, the basic design of STT-
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RAM memory cell, the writing and reading mechanism, and the restriction on CMOS circuitry will be 

discussed. 

 

2.6.1. Basic design of STT-RAM 

 

Figure 10 (a) Basic structure of a STT-RAM cell (b) The equivalent schematic diagram.  Adapted 

from [45,46]. 

The basic structure for a typical STT-RAM memory cell is depicted in Figure 10 (a). It has one 

transistor (NMOS transistor [47]) connected in series with the MTJ; interconnects connected to the 

MTJ (bit line); interconnects of the source of transistor (source line); and interconnects of the gate 

(word line) [45]. One memory cell corresponds to one bit; multiple cell arrays construct a memory 

storage device. End-tapered and elongated shape MgO-MTJs are the most widely used memory 

element in STT-RAM [7]; however, a practical MTJ is more complicated, that is it has more layers, 

than shown in Figure 10 (a). The transistor is used to provide the switching current density to the MTJ 

and used to select (address) a particular memory cell [7,8,48]. A memory device that is based on STT 

effect is of random access type, thus it is normally referred as STT-RAM (also known as spin-RAM, 

SpRAM, and so on). In STT-RAM, the current density is the crucial parameter for writing a bit, not 

current [8]. 
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2.6.2. Read and write mechanisms 

The reading mechanism of STT-RAM is similar to GMR or TMR effect. Parallel magnetizations 

configuration has lower resistance, and thus a lower voltage output (voltage is proportional to 

resistance), corresponding to a ‘0’ state (Figure 11). Antiparallel configuration has higher resistance 

or voltage output, giving a ‘1’ state. During the read operation, the word line is selected and a voltage 

is applied to the bit line such that a current density of magnitude less than the switching current 

density is supplied. 

 

Figure 11 Schematic drawing of memory states in STT-RAM. The arrows represent the relative 

orientation of the magnetizations of the fixed and free layers. Taken from [7]. 

The writing mechanism in STT-RAM follows the current-induced magnetization switching as discussed 

in section 2.2. Consider the case when a current density larger than the critical current density flows 

from the free to fixed layer (electrons in opposite direction, Figure 12). The spin of the electrons will 

reverse the magnetization of the free layer, making it parallel with the magnetization of the fixed 

layer. This is a ‘0’ state because parallel magnetization has low resistance. If the current flows from 

the fixed to free layer, the magnetizations will be antiparallel. This corresponds to a ‘1’ state. ‘1’ and 

‘0’ constitutes the binary states for storing information. During the write operation, a bit is selected 

by selecting the word line. Then, either the bit line or the source line of a selected column is 

positively biased [48]. The magnetization of the free layer can be made either parallel or antiparallel, 

with respect to the fixed layer, by changing the current direction: either from source line to bit line or 

vice versa. 
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Figure 12 Writing ‘1’ and ‘0’ in STT-RAM. F1 and F2 are the fixed and free layer, respectively. Taken 

from [2]. 
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2.6.3. Cell size and limitation of CMOS transistor 

 

Figure 13 Cell size for different memory technologies, including transistor cell. Adapted from [49]. 

Since this thesis focuses on a memory technology, it is inevitably that the term “memory cell size” will 

be often repeated throughout the thesis. Therefore, it is good to have a pictorial idea about memory 

design. Figure 13 shows the memory cell size for various memory technologies. A typical transistor 

cell occupies an area of 8F2, where F is the minimum lithographic feature size used in the fabrication 

[49]. SRAM has the largest cell size among the mature memory technologies while flash cell size is the 

smallest. MRAM has memory cell consists of one MTJ and one transistor; the transistor sets the 

minimum cell size of MRAM to 8F2. In fact, most MTJ has cylindrical shape and have a typical cell size 

of 20F2 to 30F2 to accommodate this variation. Figure 14 shows how the memory cell size has evolves 

over the years. 
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Figure 14 Memory cell size over the years. Adapted from [49]. 

The transistors in STT-RAM are provided by the CMOS wafer and are used to drive the MTJ. Careful 

selection of the gate width of the transistors is needed because the minimum STT-RAM cell size is set 

by the transistor, similar to the MRAM memory cell as discussed previously. According to ITRS 2007 

edition [50], the saturation current of the transistor is about 500 μA/μm (transistors used for high 

performance logic can reach until 1 mA/μm but low power is preferred for memory applications). 

Therefore, a MTJ with area of 50 x 100 nm2 needs a typical switching current density of 4x106 A/cm2. 

This translates to a gate width of 400 nm. It can be seen that the gate width is four times the largest 

dimension of MTJ, which means the memory cell size is limited by transistor size instead of the 

magnetic element (MTJ). This eventually increases the cell size and thus the cost per bit. Even with 

switching current density of 106 A/cm2, a gate width of 100 nm is still needed. Therefore, the 

motivation of reducing the critical switching current to less than 106 A/cm2 is to reduce the transistor 

size. The ultimate goal of STT-RAM is to achieve switching current density 0.5 x 106 A/cm2 [46]. 

However, there is no great improvement on reducing the switching current density in recent years as 

the lowest current density reported is still similar to what we had in year 2005 (2 x 106 to 3 x 106 

A/cm2
 [40]). Depending on the operating mode of the transistor, different saturation current could be 

obtained, but all still depending on the ratio of gate width to gate length [45]. 
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On the other hand, the voltage across MTJ is either limited by the voltage provided by CMOS circuitry 

(MOS transistor) or the breakdown voltage of the MTJ itself (Figure 15). Similar to the treatment of 

∆V in section 1.3, the voltage across the MTJ is proportional to the resistance-area (RA) product, and 

thus current will be inversely proportional to the RA product. Therefore, a lower RA product is 

desired. Typical RA values are 1 Ω∙μm2 and 0.1 Ω∙μm2 for MTJ and CPP-GMR, respectively. RA product 

is different from ΔRA, as R is the overall resistance of the multilayer structure. However, it could not 

be too low, as the MR ratio will reduce [7] and it is limited by impedance matching issue as 

mentioned earlier. 

 

Figure 15 Breakdown characteristic of MgO-MTJ as function of current pulse width. Taken from [37]. 
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PART II   THE BUSINESS 

 

3. Market Analysis 

In the second part, a market survey on different memory technologies is done. The advantages and 

shortcomings of these technologies will be explored according to their categories. Next, the potential 

applications and markets of STT-RAM are overviewed. Before implementing a new technology, an 

evaluation of patents of prior art is a must. From the patents and literatures, the fabrication process 

can be estimated and further used as the basis for cost modeling. The purpose of cost modeling is to 

provide insight into the price and cost of STT-RAM. From the consideration of cost and the 

technological aspects of STT-RAM, suitable business plan can be deployed or put a hold on to 

venturing further into the field. 

 

3.1. Overview 

A typical processor in personal computer can easily achieve operation speed up to 3 GHz to date. This 

translates to speed of less than 1 ns but it is hard to achieve such fast operation speed with a large-

capacity memory [51]. Memory hierarchy provides a workaround solution to this problem (Figure 16). 

A small-capacity and fast memory deals with the data that the processor needs frequently, whereas 

large-capacity memory stores the total program. For example, in a computer, level 1 (L1) cache is 

SRAM and located on the same chip as the processor. L1 cache typically has capacity of few tens of 

kilobytes but have access time of less than 10 ns. DRAM is at lower hierarchy and thus has a higher 

capacity, a few GB, but it is slower. For the above reason, different memory technologies have their 

shares in the market to cater different needs. The most prominent ones are SRAM, DRAM, and flash. 

If a universal memory exists to replace different memories in the memory hierarchy system, this will 

result in a very lucrative business. Many researchers and memory makers like to compare FeRAM, 

PCRAM, and STT-RAM, with some refer STT-RAM as a variant of MRAM, as a candidate for universal 

memory. 
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Figure 16 Schematic representation of the memory hierarchy. 

 

3.2. Comparison of memory technologies 

There are many memory technologies that are either existing in the market (DRAM, SRAM and flash), 

available in small market (FeRAM [6,52] and MRAM [53]), in advanced research and development 

stage (PCRAM and STT-RAM), or still in embryonic research state (RRAM, racetrack). The typical 

performance and fabrication parameters of these memory technologies except the embryonic ones 

are presented in Table 1. There are few properties that are important for memories: non-volatility 

(does not need constant refresh or continuous power supply for keeping information); density 

(relates to memory cell size and ultimately cost of production); speed (reading and writing time); 

endurance (must be at least 1015 cycles); and reading and writing current (energy needed for reading 

and writing). 
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40 
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Bits/Cell 1 1 2-4 2-3 1 1 1-2 1 

Same as standalone 
specifications. 

Access time 
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3
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4
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3
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Write 
energy/bit 
(pJ) 

2 2 160 65 50 2 100 2 
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14

 

Write 
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5
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15
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12
 10
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-
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14

 

Volatility 
(Data 
retention  in 
years) 

V  V NV 
(10-
20) 

NV (5-
20) 

NV 
(>10) 

NV 
(>10) 

NV 
(>10) 

NV 
(10) 

Standby 
current (μA) 

20 100 0 0 0 0 0 0 

Compatibility          eSRAM eSRAM 

Additional 
masks 

0/1 5/8 4/6 N/A 3 3 2-4 2-4 0/1 5/8 11 

Table 1 Comparison among memory technologies. F is the minimum metal line width in the 

memory cell (also referred as minimum feature size); V and NV means volatile and non-volatile, 

respectively. Adapted from [43,50,54]. 

STT-RAM has the advantages of non-volatile, theoretically unlimited endurance, fast, high density, 

and low read and write energy requirement. The immediate rival technologies of STT-RAM are 

PCRAM and FeRAM. However, these two technologies also have their disadvantages, which will be 

discussed later. The focus of this assessment will focus on competitiveness of STT-RAM, in terms of 

cost and density, compared to the other technologies, especially existing ones. This is essential since 

the acceptance of a new technology in a specific market mostly depends on the price, unless the 

technology brings significant impact in changing human behavior. This is not the case for a new 
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memory technology, at least for now. There are also demand to replace the existing memories 

because the scalability difficulties beyond 30 nm for DRAM and flash memories [55]. 

 

3.3. Existing memory technologies 

3.3.1. Static RAM (SRAM)  

 

Figure 17 (a) Schematic layout of a typical 6T-SRAM memory cell. (b) Actual layout of SRAM using 
90 nm design rule. Pl1 and Pl2 are load transistors, Na1 and Na2 are access transistor, Nd1 and Nd2 
are driver transistor. WL and BL are word line and bit line, respectively; VDD is the voltage supplied 

to SRAM. Taken from [56]. 

The most conventional design for SRAM incorporates six transistors (Figure 17) [56]. The load and 

driver transistors form a pair of inverters and are cross-coupled, which means one of the output of 

the inverters is the input of another. These four transistors could hold stable data states of ‘1’ or ‘0’, 

which is the basic of information storage in memory. During the read operation, both bit lines are 

pre-charge to logical ‘1’ and the word line is then turn on [51]. If the bit (charge) is stored at V1 (“0” 

at V2, see Figure 17), BL_N will discharge through Na2 but BL will stay high. For write operation, the 

desired state is written by charging both the bit lines to the desired state (‘0’ or ‘1’). The write 

operation is complete after the word line is turned on. When the word line is not turned on, a 

sufficient voltage is required to switch on the inverters, such that the inverters could hold the states 

at differential voltage levels. This is specified as the standby current. Therefore, the standby current 
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(20 μA) plays a more important role than the write current (1 μA) when it comes to consideration of 

power consumption. Performance wise, SRAM is the fastest memory of all memory available [46]. 

However, it requires continuous power supply for data retention, that is volatile, and it has very low 

density, due to the relative large cell size. Since density relates directly to cost, therefore SRAM has a 

very high cost per bit. As the transistor dimensions scale-down, the leakage current increases and 

thus increases the standby power consumption. 

 

3.3.2. Dynamic RAM (DRAM) 

DRAM uses single transistor-capacitor pair (1T1C) to store one bit (Figure 18) [57]. The capacitor 

stores the charge which defines the data states and the transistor controls the access to the capacitor 

[51]. To write to DRAM memory cell, the bit lines are either charged with a logical state ‘1’ or ‘0’ and 

then the state is transferred to the capacitor, by either charging or discharging [58]. On the other 

hand, for read operation, the bit lines are charged to midway between the high (‘1’) and low voltage 

(‘0’) level [57]. After the transistor is turned on by putting high voltage on word lines, the capacitors 

connect to the bit lines. The sense amplifiers are used to detect the change on bit lines induced by 

the discharging of the capacitor. Eventually, the bit lines will be pulled towards ‘1’ or ‘0’ logical level, 

depending on the initial state of the capacitor. The reading process is destructive since discharging of 

capacitor is involved [59]. Therefore a refresh process follows after readout. Moreover, the charge in 

the capacitor will eventually disappear and needs constant refresh to maintain the data state. DRAM 

performs fairly well in terms of cell size (6F2) and speed (in the range of tens of nanoseconds). 

However, it is volatile and needs a periodic refresh current [46]. 
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Figure 18 :  A schematic drawing of the memory cell of DRAM. Adapted from [57]. 

 

3.3.3. Flash memory 

 

Figure 19 Schematic drawing of a flash memory cell. Taken from [60]. 

Flash memory cell uses one floating gate transistor. The presence (absence) of charge in the floating 

gate shifts (restores) the threshold voltage of the transistor, allowing it to have two states [6]. The 

one-transistor configuration allows flash to have the highest density and even achieves multi bits per 

cell. Multi bits technology reduces the effective cell size, which mean a smaller cell size per bit. 

There are two types of flash memory architecture in industry standard: NOR and NAND flash [60].  

The NOR flash has faster access but larger cell size, and thus used majorly for code storage, whereas 

NAND flash is mainly used for data storage since it has longer access and higher programming voltage 

[61]. Each cell in NOR configuration is directly connected to word lines and bit lines of the memory 
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array, while NAND memory are arranged in series within a small block [6]. Therefore, NAND flash is 

not truly random access [62]. In NOR flash, programming (writing) is done using channel hot electron 

injection (CHEI). High voltage, 4 to 6 V and 8 to 11 V, is biased to the drain and the gate, respectively 

while source is grounded. Hot electrons flow in the cell and have sufficient energy to tunnel across 

the oxide layer into the floating gate. The speed of writing using the mechanism is on the order of 

microseconds or more. 

On the contrary, Fowler-Nordheim (FN) tunneling is used to program a NAND flash. Voltage of about 

20 V is applied to the gate while source and drain are grounded. Although FN programming is slower 

than CHEI programming, FN tunneling allows many cells to be written at once since the energy 

requirement of FN tunneling is very small (<1 nA). The erasing procedure in both NAND and NOR 

flash uses FN tunneling. A negative voltage is applied to the gate and the voltage pushes out the 

electrons. The read time for NAND flash (25 μs) is slower than NOR flash since NAND is read block-by-

block [6]. 

Flash memory has slow write speed and low endurance (105 write cycles). It also requires the internal 

voltage of at least 10 volts for write operations [46], consuming high write energy. Besides the 

intrinsic disadvantages, flash also encounter difficulties when scaling down to 30 nm [4]. NAND flash 

suffers from several issues. Capacitive coupling between floating gates will occur if word line shrinks 

to 40 nm or less [4,6]. This will create unwanted interference and disturbs the memory cell threshold 

voltage. Reducing the thickness of the floating gate can overcome this problem but it leads to loss of 

coupling between floating gate and control gate (Figure 19). The solution could be implementation of 

high k interpoly dielectrics. The reduction in number of electrons also causes the threshold voltage to 

be easily disturbed [4]. All these issues suggest a replacement of flash is needed quickly. 
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Figure 20 Schematic circuit layout of NOR and NAND flash memory cell (BL – bit line; GL – ground 

select line; SL – select line; and WL – word line.) Taken from [6]. 

 

3.4. New memory products 

3.4.1. Ferroelectric RAM (FeRAM) 

Similar to DRAM, the memory cell of FeRAM contains one transistor and one capacitor (1T1C), except 

the capacitor is made of ferroelectric material (Figure 21). A ferroelectric capacitor is created by 

sandwiching ferroelectric material, such as Pb(ZrxTi1-x)O (PZT); SrBi2Ta2O9 (SBT); or Bi4-xLAxTi3O12 (BLT), 

between two metal electrodes (Figure 22) [6,51].  The two data states at zero voltage are result from 

electrical hysteresis behavior of ferroelectric material, the electric equivalent of ferromagnetic 

material (Figure 23). The two polarization states in a ferroelectric capacitor can be visualized as 

charges accumulate at either side of a normal capacitor plate. 
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Figure 21 Schematic drawing of the FeRAM memory cell incorporating one transistor and one 

ferroelectric capacitor with Vc. CBL is the parasitic capacitance of the bit line. Taken from [63]. 

The read operation of FeRAM is destructive. During the read operation, a word line is selected to 

switch on the transistor, allowing the capacitor to connect to the bit line [62,63]. Regardless of the 

initial state of the ferroelectric capacitor, a voltage is then applied to the plate line. If the capacitor 

switches, that is one polarization state changes to another, an extra switching charges flows to the bit 

line. Therefore, the bit line will give different voltage level depending on the initial state of the 

ferroelectric capacitor. The differentiation of ‘1’ and ‘0’ is done by sense amplifiers similar in DRAM 

case. For writing, the bit line is driven to a logical ‘1’ state (VDD) to write ‘1’ to the memory cell. 

Otherwise, the bit line is driven to 0 V to write ‘0’ state [63]. A shorter voltage pulse is applied to the 

plate line during this writing operation. This reading and writing mechanism leads to low endurance 

of FeRAM (<1015 cycles). The write current needed depends on the voltage needed to switch the 

electric polarization state. 

FeRAM have been around for sometime but still suffer from scalability issue [61]. Despite many years 

of effort, FeRAM cell size (16F2) still remain larger than DRAM and NAND flash cell size [6,51]. There 

are also fatigue, imprint, and retention issues in FeRAM that addresses reduction of remnant 

polarization with each read or write cycle, preference to continue staying at one polarization state, 

and loss of polarization over time, respectively [6]. FeRAM also possesses some processing difficulties, 

such as as high processing temperature and degradation by presence of hydrogen. Nevertheless, 

FeRAM have been used for embedded application since its cell size is comparable to other embedded 

memory technologies and have better performance in terms of write endurance (compared to 

embedded NOR) and non-volatility (compared to embedded DRAM and SRAM) [6,51]. FeRAM also 

find its place in radiation resistance application, such as aerospace industry [4]. 
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Figure 22 Typical integration of ferroelectric capacitor into the CMOS process. (a – bit line, b – gate 

of the pass transistor; the ferroelectric capacitor comprises of: c – top electrode, d- ferroelectric 

material, and e – bottom electrode). Taken from [62]. 

 

Figure 23 Hysteresis loop for a ferroelectric material: polarization (charge) versus voltage. Ps is the 

saturation polarization, Pr is the remnant polarization and Vc is the coercive voltage. Taken from 

[62]. 
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3.5. Memories in development 

3.5.1. Phase Change RAM (PCRAM) 

 

Figure 24 Cross section of a simplified PCRAM memory cell. Taken from [64]. 

PCRAM basically is a one transistor and one resistor (1T1R) technology. The resistor is a material that 

can switch between an amorphous phase and a crystalline phase in a thermally induced reversible 

process [4]. In crystalline state, the material has much lower resistance as compared to amorphous 

state. This large resistance difference easily allows PCRAM to operate in multi bits [6]. This material is 

normally chalcogenide alloys and the most commonly used one is Ge2Sb2Te5 (GST) due to its large 

amorphous to crystalline resistance ratio and fast crystallization speed [65].The SET operation 

involves heating of material below the melting temperature (or above the melting temperature and 

then allow slow cooling down) until the material is fully crystallize [6]. This operation determines the 

write speed of PCRAM [6] because it is the slowest process and it ranges from 50 to 150 ns [65]. On 

the other hand, large electrical current is applied for tens of nanoseconds and cut off rapidly (less 

than a few nanoseconds) to quench the phase change material to amorphous phase in the RESET 

operation [6,65]. The RESET operation determines the current or power requirement since the 

melting temperature is much higher than crystallization temperature (Figure 25). 

Since larger access devices (transistors) are needed to supply higher RESET current, many efforts are 

focus on reducing the RESET current to minimize the overall cell size [65]. This either requires one of 

the dimensions of PCRAM to be scaled less than the current lithography capability [65] or reducing 

the contact area between phase change material and the heater [62]. The focus is on the latter and 

there is no inherent limitation in future scaling down, at least to the extent of thermal proximity 

effect is not an issue [65]. However, write endurance is the biggest problem in PCRAM. After a 

number of cycles of phase switching (1012), the PCRAM fails [65]. The failures include physical 
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disconnection of phase change material from the electrodes and occurrence of phase segregation in 

the phase change material. Phase segregation could cause resistance level drift and hard-to-form 

amorphous state. Despite the limitations, PCRAM holds good aspect in scaling and it is also radiation 

hard [4]. 

 

Figure 25 Temperature profile needed to change the phase of PCRAM. Taken from [65]. 

 

3.5.2. Other  memory technologies 

Resistive RAM (RRAM) relates to manipulation of resistance change at different voltage level [6]. 

Materials such as NiO and TiOx form a conductive oxygen vacancy or defect path when an electric 

field is applied. On the other hand, conductive bridge RAM (CBRAM; programmable metallization cell 

(PMC); or solid electrolyte) involves growth of conductive filament by means of oxidizing metal ions 

in the electrolytes between two metal electrodes. Polymeric or organic semiconductors are used in 

organic memories, whereas racetrack memory utilizes the movement of magnetic domain wall by STT 

effect [6]. There are also improvements on the existing technologies, such as silicon-oxide-nitride-

oxide-silicon (SONOS) and nanocrystal, to promote better charge trapping in flash devices. In 

conclusion, there are many memory technologies that are either in research or development. The 

discussion of competing technology is limited to those which have in state of advanced development, 

with at least a prototype available in the literature. 
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3.6. Magnetic Memories 

3.6.1. Magnetic RAM (MRAM) 

 

Figure 26 Schematic drawing of (a) MRAM memory cell and (b) STT-RAM memory cell. Taken from 
[66]. 

In this thesis, MRAM refers to field-induced magnetization switching magnetic memory, as opposed 

to current-induced switching in STT-RAM. Similar to STT-RAM, a typical MRAM memory cell consists 

of a MTJ (specifically MgO-MTJ) and a transistor (Figure 26). The read operation is similar to STT-RAM, 

a current passes through the MTJ and the resultant resistivity level is measured. For the write 

mechanism, one current passes through the bit line (IEasy) while another current (IHard) flows through 

the digit line (some refers it as word line [7]). A large current will induce a high magnetic field. The 

combination of these two magnetic fields will able to switch the magnetization of the free layer 

(Figure 27). The limitations of MTJ-MRAM include high write current, half-select issue, shape 

dependence of magnetic element (MTJ), and large cell size [4]. First of all, the requirement of two 

conducting lines, to induce magnetic fields, increases the overall memory cell size. Besides that, the 

shape variation of the magnetic element (MTJ) can result in formation of multiple domains and 

distort the switching field threshold [67]. At high density, the magnetic field can perturb adjacent cell 

to switch undesirably and causes half-select issue [6]. This problem is solved using toggle mode 

MRAM, which its free layer is replaced by synthetic antiferromagnetic (SAF) structure [7]. SAF 

structure consists of two ferromagnetic layer antiferromagnetically coupled through a thin NM 

spacer layer, which is usually Ruthenium (Ru) [68]. However, even with toggle MRAM, large write 

current is needed to switch magnetization (on order of 10 mA). Scaling down actually increases the 

write current needed. Moreover, since resistance also increases with smaller area, ohmic loss will 

dominate the power consumption. On the good side, MRAM is fast, non-volatile, has infinite 

endurance, and also radiation resistant [4,7]. The appearance of STT-RAM revives the promises of 

MRAM since the switching current in STT-RAM reduces when the technology scales down [6]. This is 

due to the switching parameter in STT-RAM is determined by switching current density rather than 
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switching current. Nevertheless, despite the difference in the underlying physics, STT-RAM is often 

regarded as one of the variants of MRAM because both MRAM and STT-RAM are magnetic memories 

and have similar design. 

 

Figure 27 Read and write operation of a MTJ MRAM. Adapted from [69]. 

 

3.6.2. Spin Transfer Torque RAM (STT-RAM) 

The details of STT-RAM are discussed in section 2.6. To date, there are two publicly announced 

prototypes of STT-RAM memory chip, which are demonstrated by Sony and Hitachi [48,70]. The 

highest density reported is the 2 Mb memory chip from Hitachi (Figure 28), manufactured using 0.2 

μm CMOS logic process and uses a write current of 200 μA. It has a cell size and chip size of 1.6 x 1.6 

μm2 and 5.32 x 2.50 mm2, respectively. This prototype also confirmed 109 endurance cycles with no 

degradation [71]. 
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Figure 28 2Mb SPRAM by Hitachi. Taken from [72]. 

 

3.7. Application 

One of the motivations in developing STT-based device is to reduce the high switching current 

needed in MRAM. Therefore, the applications of STT effect are very closely related to the field of 

memory. Since STT-RAM has similar working principles as MRAM, all the applications of MRAM can 

be equally well catered using STT-RAM, but with a higher density (translates to lower cost). Despite 

the obvious application of becoming a standalone memory to replace existing memory technologies, 

a few more examples are listed in the following [73,74]. The first and most likely application is as 

embedded memory, which is a memory design that has memory built on the same chip as the 

processor. The memory cell size for embedded applications is normally bigger using the combination 

of embedded SRAM, DRAM or flash [75]. Speed and non-volatility are the main concerns for 

embedded applications instead of the cell size. Flash are well known to be slower than DRAM and 

SRAM, whereas DRAM needs a constant current to refresh its information. SRAM also needs a 

continuous power supply, besides having problem in providing high density if it is used in small 

dimension applications, such as mobile phones and portable multimedia players. STT-RAM eliminates 

all the disadvantages and retains the advantages of each memory mentioned above.  

Secondly, STT-RAM is suitable in fast and continuous updates condition. This includes 

microcontrollers and robotics with data feedback in factory; printers systems that handles large 

amount of users; and large data communication systems. Thirdly, STT-RAM can be used in high 
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reliability condition, such as health care electronics, power management systems, and server storage. 

Finally, STT-RAM is extreme temperature and environment condition tolerant. This will be particularly 

useful in transportation, such as automobile controls and feedback; and in military uses, such as 

missiles and spacecraft (which requires high resistance to radiation damage). 

 

3.8. Present memory market 

The total estimated market for memory chip is about $50 billion to $60 billion annually (Figure 29). 

Recession starts in late 2007 and severely affected the semiconductor industry today. The oversupply 

in the memory market also plays an important role in bringing down the price of memory [76] and 

eventually leads to loss. Therefore, the decrease in memory market share of year 2009 in Figure 29 

reflects the reality of recession. 

STT-RAM is most expected to replace DRAM, SRAM and NOR flash, which accounts for about 80% of 

the total memory market. Assuming a market penetration of 1%, the estimated revenue is around 

$400 million. The market share is expected to grow slowly for the first few years for a new technology, 

thus the total revenue for the first few years will probably less than a few billion dollars. If wide 

implementation of STT-RAM is supported by major memory makers in the world, the market 

penetration could rise to 50% or even completely replacing DRAM, SRAM and NOR flash. This will give 

ultimate revenue of around $20 billion to $40 billion. 

One of the exciting opportunities for STT-RAM is the embedded memory market. Figure 30 shows the 

breakdown of the memory revenue in mobile phone industry. It is expected that the penetration of 

this market will be easier because of advantages in cell size, endurance and speed dominate. The 

memory revenue for this part will be around $7 billion excluding NAND flash. STT-RAM could be sold 

into further end of the supply chain as standalone memory chip or into earlier implementation as 

part of integrated circuit. Therefore, the immediate intended customers will be memory module 

makers or the manufacturers of mobile phone and portable multimedia players. The selling channels 

could be either direct channel or via electronics wholesale distributors. 
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Figure 29 Breakdown of memory market, with estimation and forecast. The numbers shown are 

the corresponding values. Adapted from [75,77,78]. 

 

Figure 30 Memory revenue in mobile phone markets. pSRAM is one type of DRAM that mimics the 

operation of SRAM. Taken from [79]. 
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The pricing of different existing memories is obtained by surveying various sources from the internet 

[80-84], and it is given in Table 2. 

Technology Price ($/Gb) 

NAND flash 0.10-0.40 

NOR flash 15 

DRAM 0.60-2 

SRAM 1000-2000 

Table 2 Price of different memory technologies to date. Adapted from [80-84]. 

Many companies, especially those who worked in developing MRAM before, are researching and 

developing STT-RAM. These companies includes but not limited to Everspin (Everspin Technologies is 

a spin-off company that handles the business of MRAM by Freescale [85]), Grandis, Hynix, IBM-TDK, 

Samsung, Toshiba, Hitachi, Qimonda, Siemens, and Altis. [86,87]. Among all these companies, Grandis 

appears to be the most popular. Although Grandis has made many announcements related to STT-

RAM [88], such as opening of first 300 mm MTJ fabrication facility dedicated to STT-RAM and joint 

development with Hynix, no product or prototype has been available publicly. Recently, the co-

founder of Grandis has started up Avalanche Technology and plan to fabricate standalone STT-RAM 

at 65 nm [86]. 
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4. Implementations 

4.1. Evaluation of patents 

Evaluation of patents allows us to understand the latest advancement in a specific technology 

because publications in this form guarantee the inventors a 20 years of monopoly from the date of 

application [89]. This is especially true when there lays a great business opportunity behind the 

inventions, such as STT-RAM. In a patent, the most important part is the claim of the invention. Claim 

number one is the broadest claim in the patent. Each subsequent claim narrows down the 

uniqueness and the real features of the invention. The narrower claims also protect the patents if 

claim number one is deemed invalid (too broad). The description is given to educate the readers 

about the invention in exchange for the claims granted to the inventor(s). 

This section will only examine patents that are already issued because patent applications might be 

deemed invalid. To further restrict the scope of this section, only United States patents are examined. 

Therefore, it is assumed that United States (US) patents represent the overall technology trend. The 

search on issued patents using US classification related to magnetic memory gives more than 3000 

patents in the database of United States Patent and Trademark Office [90]. To further understand the 

distribution of STT-RAM related patents, the patent search is conducted using manipulation of 

keywords and then manual reviewing using Free Patents Online website [91]. There are a few points 

to note before going to the result. It is hard to differentiate STT-RAM patents from MRAM sometimes 

since the difference is small (see section 3.6.1) and the intention of filing a patent is to make the 

invention has the widest claim possible; for example, [92]. The keyword is mainly based on assignee 

name (usually are companies) and further restricted by specific terms to reduce the unrelated 

patents. The best effort has been made to include most of the institution that have been issued STT-

RAM related patents. Since there are many ways to describe an invention, this keywords combination 

will inevitably eliminate some of the related patents; however, it is common to all cases and thus still 

gives relative number of patents among the assignees. In some rare cases, the same patent that 

shared by different assignees could be accounted twice. The relevance point system, provided by 

Free Patents Online, is used to further filter the search result. STT-RAM is a very specific technology 

and many broad patents could have already covered a design of STT-RAM. Therefore, patents with 

relevance point more than 500 (out of 1000) are considered and the total amount is 94. With the 

above points in mind, the search reveals that Grandis, Inc. is dominating the STT-RAM patents realm 

with 46 patents (Figure 31). 
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Figure 31 Distribution of patents with relevance points more than 500. NYU and HP is New York 

University and Hewlett-Packard, respectively. 

Further examination of some patents reveals that the patents mainly involve three categories. The 

first one involves new structure of magnetic element, which is normally still MTJ but with different 

arrangement of layers [38,93-96]. The claims will also include the memory design by using plurality of 

the magnetic element mentioned. The second category describes the design of the magnetic memory 

array, which includes bit lines and word lines, in detail [97,98]. Finally, the third category of patents 

discuss only the fabrication of a new magnetic element (MTJ) [99,100]. Therefore, to secure a unique 

invention for fabrication of STT-RAM, at least two levels of patents are needed, one for the magnetic 

element and another one for the design of the circuit. 

As mentioned above, the patents reflect the technological trend of an invention. Much effort has 

been put into reducing the switching current density for the motivation discussed in section 2.6.3. 

Referring to equation ( 5 ) or ( 6 ) in section 2.3, one of the way to reduce the switching current 

density is to introduce a free layer with perpendicular anisotropy as described in the patent 

numbered 7531882 [101]. This new free layer has perpendicular anisotropy energy with value more 

than 20% of the in-plane anisotropy energy, but less than 100%. This allows the magnetization of the 

free layer to stay in-plane when in equilibrium but able to offset the 2πMS term. Another invention 
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introduces a keeper layer that is adjacent to the free layer [38]. The keeper layer itself has 

perpendicular anisotropy and is coupled magnetostatically to the free layer, effectively negates the 

surface anisotropy (2πMS). Besides that, the switching current density can also be reduced by 

increasing the spin transfer efficiency. This can be done using a spin diffusion layer that has a very 

short spin diffusion length (less than 10 nm) next to the free layer [94] because it can confine the spin 

dependent current in the MTJ to increase the STT in the free layer. Similar result is observed in a STT-

RAM magnetic cell combining both GMR and MTJ structure but with only one free layer [95]. The free 

layer experienced two STT and the switching current is thus reduced. Moreover, the surface 

anisotropy can be reduced directly by using a ferromagnetic material with a low saturation 

magnetization (MS) [96]. Unfortunately, the patents do not disclosed the value of the achievable 

switching current density with the inventions they presented. 

 

4.2. Fabrication steps 

 

Figure 32 Simplified fabrication steps for a STT-RAM. 

The fabrication steps of STT-RAM are identical to MRAM because only the metal lines for inducing 

one of the magnetic fields are removed in STT-RAM. Similar with MRAM, the starting step can begin 

at the back-end of a CMOS wafer (Figure 33) [102]. 

CMOS wafer

Deposition of magnetic multilayers

Patterning of MTJ

Copper interconnects and vias

Dicing and packaging into memory chips
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Figure 33 (a) Cross sectional view of Freescale MR2A16ATS35C 4Mb RAM. (b) Schematic view of 

MTJ on top of CMOS circuit in a STT-RAM. Adapted from [44,102]. 

The fabrication process described here is an approximation to the exact process as it is believed that 

the actual process is far more complicated for an industry-standard STT-RAM. In summary, three 

additional mask levels are required to integrate the MTJ to form STT-RAM: one for patterning the 

MTJ, and another two to form local interconnects and via to the interconnects, respectively [103]. 

According to the structure of a MRAM product from Freescale (Figure 33) [102], the MTJ is located 

between metal lines. M4 is the metal line from the CMOS wafer and M5 is the metal line deposited 

after the MTJ is integrated to the CMOS wafer.  

Detailed fabrication process in [104,105] is used to estimate the MTJ integration in STT-RAM. First, 

the magnetic and nonmagnetic layers are deposited in a desired sequence onto the whole CMOS 

wafer by direct current (dc) magnetron sputtering, whereas the insulating tunnel barrier (MgO) is 

deposited by radio frequency (rf) magnetron sputtering. In a practical device, synthetic 

antiferromagnetic (SAF, see section 3.6.1) structure is normally used as the fixed and free layer. The 

advantage of SAF structure is its less sensitivity to the magnetostatic stray field created by other layer 

[2,106]. A pinning layer is used to fix the magnetization of the fixed layer and render the fixed layer 

undisturbed by STT from free layer, whereas capping layer is used to protect the MTJ stack and it has 

influence on the TMR effect [19]. An example of a MTJ stack is shown in Figure 34. The final MgO 

layer is obtained by depositing MgO on an Mg seed layer (0.4 nm) to acquire low RA product.  

(a) (b)
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Figure 34 An example of a practical MTJ. 

The multilayers are later annealed at 280 °C for two hours and the patterning of MTJ follows next. 

(Before patterning the MTJ, a test of MR ratio and RA product could be done on the wafer by using 

equipment such as CIPTech [107].) A negative photoresist mask is patterned using lithography and 

further trimmed. The photoresist together with a conducting hard mask (Ta, TaN or TiN) situated 

below are put on top of the multilayers. The hard mask can be later used as the capping layer. 

Reactive ion etching (RIE) is used to etch through the hard mask to pattern the multilayers into 

desired MTJ shape. This etching process should stop in the MgO barrier to avoid shorting and 

inhomogeneous current flow. The resist is striped off after the etching process. The patterned 

structures are then encapsulated with dielectric and further planarized by chemical mechanical polish 

(CMP). The CMP process eliminates any protruding features and prepares the wafer for damascene 

copper wiring. Next, a second photoresist mask is prepared to define the trench. The trench is etched 

using RIE into the dielectrics using the previous conducting hard mask for self-alignment. The depth 

of the trench is enough to expose the conducting hard mask. After a cleaning step, a wiring liner film 

is deposited along with a copper seed layer. The trench is subsequently filled with copper 

electroplating. A final CMP process is used to planarize the surface. The overall process and final 

product are shown in Figure 35. 
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Figure 35 (a) Schematic fabrication process of MTJ. (b) TEM cross section of the finished MTJ device. 

MA is the bottom electrode. The dimension of this MTJ is larger than the process described. 

Adapted from [105]. 

The third photoresist mask is used to create vias necessary for connecting the transistors from the 

CMOS base to the MTJ above (Cu above MT in Figure 33). At the end, the wafer is diced and packaged 

into desired size to constitute a memory chip.  

 

4.3. Cost estimation 

4.3.1. Dependence of parameters 

The cost of fabricating a STT-RAM is closely related to technological parameters associated with it, 

such as switching current density and the size of MTJ and transistor. Here, a simple model is 

established to examine the effect of this dependency. The area of a STT-RAM memory cell (Acell) is 

determined by both the area of the MTJ (AMTJ) and the driving transistor, 

Acell = k1AMTJ + k2 Lg 
2

 

( 9 ) 
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where Lg is the gate width of the driving transistor, k1 and k2 are proportional constants that decides 

the effect of the area of MTJ and driving transistor in a memory cell, respectively. The effect of the 

elongated shape of MTJ is considered and absorbed into the constant k1, whereas the saturation 

current of the transistor per gate width (Isat/g)  is around 500μA/μm [50]. Therefore, the required gate 

width depends on the switching current (Ic) of the MTJ, 

Lg =
Ic

Isat /g
 and Ic = JcAMTJ  

( 10 ) 

where Jc is the switching current density of the MTJ. Substituting equations ( 10 ) into equation ( 9 ), 

we obtained 

Acell = k1AMTJ + k2  
JcAMTJ

Isat /g
  

2

 

( 11 ) 

The cost per bit can be expressed as 

Cbit =
Cwafer

Ncell
=

Cwafer

Nbit
 

( 12 ) 

where Cbit, Cwafer, Ncell and Nbit is cost per bit, cost per wafer, number of cells per wafer, and number of 

bits per wafer, respectively. At high volume manufacturing, the complexity of a fabrication process 

often dominates the total cost of a wafer. Since the number of masks levels determines the total 

fabrication steps, the cost per wafer increases for each addition of mask levels. Therefore, the cost 

per wafer is assumed to have the following expression: 

Cwafer = Cwm  Nmask  . 

( 13 ) 
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Cwm is the cost per mask level per wafer and Nmask is the number of mask levels for that memory 

technology. The number of bits per wafer can be obtained by dividing the area of cell with area of the 

whole wafer (Awafer), namely 

Nbit = f  
Awafer

Acel l
 . 

( 14 ) 

f is the utilization efficiency and has value between 0 and 1. It measures how much area in a chip is 

occupied by memory elements (MTJ for the case of STT-RAM); 1-f is the area occupied by other logic 

that needed for the memory to function. Substituting equations ( 13 ), ( 14 ) into ( 12 ) with ( 11 ), the 

cost per bit for a STT-RAM can be expressed as 

  

Cbit =
Cwafer

Nbit
 

 =
 Cwm   Nmask  (Acell )

(f)(Awafer )
 

=
 Cwm   Nmask  

(f)(Awafer )
 k1AMTJ + k2  

JcAMTJ

Isat /g
  

2

  

( 15 ) 

Examination of equation ( 15 ) reveals that cost per bit can be reduced if the switching current 

density and area of MTJ decreases. This expression is used to calculate the cost per bit for a typical 

STT-RAM with some values from [37] (Table 3). 

AMTJ 125 nm × 220 nm 

Isat/g 500μA/μm 

Jc 2.2 × 106 A∙cm−2 

Table 3 Values for the parameters in a STT-RAM. Taken from [37]. 

Assuming k1=k2=16, f=0.5, and 200 mm wafer (Awafer= 0.0314 m2), the cost per bit can be simplified to 

Cbit =  1.52 × 10−9  Cwm   Nmask   
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Assuming a $500 CMOS wafer needs around 20 mask levels and the cost per mask level per wafer is 

roughly the same for different memory technologies, Cwm is given a value of $2.5. The number of 

mask levels for a STT-RAM is 23 (3 additional mask levels on a CMOS wafer). Therefore, the cost for a 

STT-RAM using the above parameters is $87.4/G b. The accuracy of estimating the cost relies heavily 

on the accuracy of the value of Cwm. 

To compare between two memory technologies, a simple expression can be written by making 

certain assumptions: the cost per mask level per wafer and the utilization efficiency is the same for 

different memory technologies. Hence, for same wafer area, the cost per bit for specific memory 

technology is 

Cbit
′ =  

Nmask
′

Nmask
    

Acell
′

Acell
  Cbit   

( 16 ) 

where the primed terms refer to the parameters of one technology and the unprimed terms refer to 

the other. Since the base mask levels are around the same (approximately 20), the memory cell size 

have more impact on the cost per bit for a memory technology. 

 

4.3.2. Bottom-up cost model 

It is often very difficult to estimate the cost using bottom-up method since many specialized 

knowledge are needed. However, the method still can give a rough idea about the order of 

magnitude of the cost, if it obeys certain assumptions. In the case of STT-RAM, some important 

assumptions are mentioned here. First, the STT-RAM prototype from Hitachi (section 3.6.2 [72]) is 

used as the basis of this cost modeling (0.4 μm feature size (F); cell size of 2.56 μm2 (16F2); chip size 

of 13.3 mm2; 2 Mb per chip; and have sixteen 128 kb arrays with size of 0.328 mm2 each). Hence, the 

amount of chip per wafer is 1700 after considering 80% yield and 90% usable wafer area. Second, the 

multilayer used in this cost model is shown in Figure 36, which is based on a description from a 

patent with slight modification to ease calculation [95]. Third, the number of equipments is estimated 

using the fabrication process described in section 4.2, the final cost is very much dependent on the 

equipments used and thus is one of the main factor that limits the accuracy of this cost model. In this 
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case, one equipment, with usable lifetime of five years, is dedicated to each fabrication step to avoid 

possible contamination, which is also shown in Figure 36. The fabrication process starts with a 200 

mm CMOS wafer and it costs $500 per wafer. Fourth, the equipment can only process one wafer at a 

time and the cycle time is two wafers per hour. Finally, the overhead and maintenance costs are 

equal to 5% (excluding overhead) and 15 % of all other costs, respectively, and are included to cover 

indirect costs, such as consumables. 

 

Figure 36 (a) Multilayers and (b) equipments and materials used in the bottom-up cost modeling. 

 

Figure 37 Variation of cost per chip as production volume scales up. 

As expected from a memory business, the fixed cost dominates the total cost (Figure 37). Fixed cost 

includes equipments, masks, building rental, clean room, maintenance, and overhead costs. On the 

other hand, variable cost consists of materials, labor, and electricity costs. As the production volume 
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scales up while the production capacity (around 35 million chips or 16000 wafers in Figure 37) 

remains the same, the cost per chip reduces rapidly until it saturates to a value near $2 per chip. Even 

if we expand the capacity (1X corresponds to around 16000 wafers annually), the cost per chip does 

not deviate far from $2 (Figure 38). When considering the expansion of production capacity, the 

production volume is set to equals to the production capacity, in other words, the factory is running 

at its maximum utilization ratio. 

 

Figure 38 Effect of expanding production capacity at maximum factory utilization ratio. 

The production volume is first set to be low (1,000 wafers per month), and the cost per chip is $2.51, 

corresponding to $1255/Gb. If the volume is increased to 10,000 wafers per month (the capacity 

scales up to ten times as well), the cost per chip drops slightly to $2.41, which means $1205/Gb. The 

distributions of costs for these two cases are shown in Figure 39 and are similar in overall. These 

numbers suggest that fabrication using 0.4 μm is expensive and hard to replace DRAM that only costs 

a few dollars per Gb. To investigate the effect of scalability of the cell size on the cost, the same 

memory chip architecture is used and the cost to shift to a smaller feature size is assumed to be the 

negligible as compared to the effect of decreasing cell size. For a same cell size of 16F2 but with 

feature size of 90 nm, the same array size can have more bits in it and the chip now has 40 Mb of 

memory capacity. The cost of this 40 Mb chip becomes $60/Gb if the production volume is 10,000 

wafers per month. For an ultimate cell size for STT-RAM (6F2) and F=32 nm, this gives around 

$2.82/Gb. Scaling down (reducing F) decreases the area of the memory cell in whole and thus is 
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necessary to reduce the selling price of STT-RAM to be comparable to DRAM price range. Another 

way of reducing the cost per bit is by introducing more effective memory cell design; for example, 

reducing 16F2 to 6F2. 

 

Figure 39 Distribution of cost for a STT-RAM for (a) 1,000 wafers per month and (b) 10,000 wafers 

per month. 

 

4.3.3. Relative cost model 

The relative cost model is based on the arguments in section 4.3.1 and provides another perspective 

on the cost of STT-RAM. The first comparison is made between the demonstrated STT-RAM 

technology and a mature memory technology, DRAM. DRAM needs 5 additional mask levels and cell 

area (or cell size) of 0.015 µm2 (6F2; F=50 nm; year 2009 [50]), whereas the additional mask levels and 

cell size for STT-RAM is 3 and 2.56 µm2 (16F2; F=400 nm, according to the prototype of Hitachi [70]), 

respectively. Using equation ( 16 ) in section 4.3.1 and the cost of DRAM assumed at $1.58/Gb [108], 

the cost of STT-RAM is about $248/Gb. 

The second comparison is with a memory technology that has almost the same technological 

maturity with STT-RAM, the MRAM. The Freescale 4Mb MRAM is priced at $15 per chip or $3750/Gb 

[109]. The cell size of this MRAM is 1.55 µm2 (48F2; F=180 nm [110]), whereas the cell size of 

STT-RAM is as mentioned previously. Both MRAM and STT-RAM need the same additional mask 

layers. Using equation ( 16 ),  the price is about $6194/Gb. The cost of STT-RAM could be several 

times less than the selling price because the profit margin is generally large for new technology, as a 
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high price is normally set to test the market response. This is also hinted when Freescale reduces the 

price of the same MRAM from $25 to $15 after one year of introduction [109].  

 

4.3.4. Comparison between two models 

The two cost models discussed above have ignore the effect of yield, throughput and testing 

procedures on different memory technologies. These parameters might be very different from one 

memory technology to another. However, these cost models are useful to provide an idea on the cost 

range of STT-RAM. Comparing both models, the bottom-up and relative cost models gives a cost of 

$1205/Gb and $248/Gb, respectively for the Hitachi prototype mentioned. The difference could 

possibly arise from the following reason. The comparison with the mature DRAM gives the cost of 

STT-RAM that is after optimization, especially in its fabrication process. On the other hand, the 

bottom-up model was based on current fabrication process. Nevertheless, these two models give an 

idea on the cost range of STT-RAM using the technology described. These two cost models also 

reemphasis the impact of area of memory cell on the cost per bit of STT-RAM.  

 

4.4. Business model 

4.4.1. Patents-licensing 

Using the operating revenue of Grandis, Inc. in year 2006 ($2.6 million) as an example, the estimated 

revenue for a patents-licensing company is less than $10 million per year [111]. Although the profit is 

small compared to the total memory market size, but this involves a relative light investment at the 

starting point. The main risk of this business plan is the existence of large amount of patents in the 

industry. It might be hard to start up a new company with important technology that other 

companies cannot do without. Moreover, the competitors are developing their own version of STT-

RAM. Even if the start-up company has some crucial patents, this business plan will fail if other 

companies catch up with a better solution. Therefore, start-up companies could license their patents 

to other companies for the first few years after STT-RAM is commercialized, but soon they need to 

fabricate their own memory chips either by outsourcing to foundries or seek co-operations from 

major memory chips makers. 



58 

 

4.4.2. Fabless company 

If a company designs the STT-RAM and the fabrication is handed over to foundries (semiconductor 

fabrication plants), it is expected that portion of the profit will be divided to the foundries as well. 

The estimated revenue is $400 million for a market penetration of 1% according to section 3.8. The 

profit depends on the first setting of the price and also the market penetration. However, the 

condition for this model to be successful is the company must have adequate patents to fabricate the 

whole STT-RAM. Licensing missing key patents from other companies will still be feasible if the 

missing patents are not the main values of the whole STT-RAM. Foundries might not able to produce 

MTJ in large scale and optimized way could also be one of the risks involved. 

 

4.4.3. Full fabrication 

A full fabrication facility is estimated to involve first year investment of $130 million and 

subsequently $51 million yearly as calculated using the bottom-up cost model. A good strategy is 

starting the fabrication process with a CMOS wafer; this helps to avoid potential patent conflicts and 

loss due to unsalable of products: by stocking CMOS wafers and only produce as needed [102]. 

Considering the situation listed in section 3.8, the break-even point (cost equals to revenue) might 

happen within the first few years, heavily dependent on the market penetration and the initial pricing 

(or initial profit margin). However, big semiconductor or memory players, such as Intel, Toshiba, 

SanDisk, Hynix, Samsung, and so on will mostly likely have the “influence” advantage (reducing the 

price of and improving the existing memory to buy time for their own version of STT-RAM to emerge) 

since they are in other memory business as well. On the other hand, giant fabless companies can give 

pressures to the foundries to reduce the cost of fabrication for their own product since they are the 

main customers of the foundries. Eventually, it depends on how well the company can protect their 

intellectual properties and how to maintain advantages in terms of technology ahead of other 

competitors. 
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5. Conclusion 

 

Figure 40 Timeline planned for different memory technologies. Taken from [50]. 

STT-RAM provides a solution for overcoming the high write current in MRAM, the first and most 

important technological barrier of magnetic memory. However, STT-RAM is still limited by the 

minimum gate width of the transistors that can be used. Therefore, the second-major technological 

barrier is the size reduction of the transistor, which could be done either by the scaling down of 

critical switching current of the magnetic element or increasing the saturation current per gate width 

for the MOS transistor. It would probably need another few years to overcome this technological 

barrier if it is possible. Meanwhile, the existing technologies will not stop developing and are 



60 

expected to scale-down. Let assume the industry overcame the second-major barrier, the wide 

acceptance of STT-RAM still depends on the cost, which are determined by the willingness of main 

memory providers to scale-up STT-RAM for high volume manufacturing. All these indications biased 

to a focus on research and development for a few more years rather than entering the market right 

now. Within few years (predictably to be by year 2012, see Figure 40 [50]), the promises of STT-RAM 

as massive replacement of existing technologies will be made clear. Otherwise, it would be expected 

that STT-RAM to take only small portion of the total memory market, or in other words, becoming a 

niche market technology. 
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