383 research outputs found

    Ultraviolet Behavior of the Gluon Propagator in the Maximal Abelian Gauge

    Full text link
    The ultraviolet asymptotic behavior of the gluon propagator is evaluated in the maximal Abelian gauge in the SU(2) gauge theory on the basis of the renormalization-group improved perturbation theory at the one-loop level. Square-root singularities obtained in the Euclidean domain are attributed to artifacts of the one-loop approximation in the maximal Abelian gauge and the standard normalization condition for the propagator used in our study. It is argued that this gauge is essentially nonperturbative.Comment: 15 pages, 2 figure

    Gravitational Waves in Relativistic Theory of Gravitation

    Full text link
    It is shown that, in the framework of Relativistic Theory of Gravitation with massive graviton, gravitational waves, due to the causality condition, do not bear negative energy flows.Comment: 4 page

    Constrained Dynamics of Universally Coupled Massive Spin 2-spin 0 Gravities

    Full text link
    The 2-parameter family of massive variants of Einstein's gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200

    How to obtain a covariant Breit type equation from relativistic Constraint Theory

    Get PDF
    It is shown that, by an appropriate modification of the structure of the interaction potential, the Breit equation can be incorporated into a set of two compatible manifestly covariant wave equations, derived from the general rules of Constraint Theory. The complementary equation to the covariant Breit type equation determines the evolution law in the relative time variable. The interaction potential can be systematically calculated in perturbation theory from Feynman diagrams. The normalization condition of the Breit wave function is determined. The wave equation is reduced, for general classes of potential, to a single Pauli-Schr\"odinger type equation. As an application of the covariant Breit type equation, we exhibit massless pseudoscalar bound state solutions, corresponding to a particular class of confining potentials.Comment: 20 pages, Late

    Background Geometry in Gauge Gravitation Theory

    Get PDF
    Dirac fermion fields are responsible for spontaneous symmetry breaking in gauge gravitation theory because the spin structure associated with a tetrad field is not preserved under general covariant transformations. Two solutions of this problem can be suggested. (i) There exists the universal spin structure S→XS\to X such that any spin structure Sh→XS^h\to X associated with a tetrad field hh is a subbundle of the bundle S→XS\to X. In this model, gravitational fields correspond to different tetrad (or metric) fields. (ii) A background tetrad field hh and the associated spin structure ShS^h are fixed, while gravitational fields are identified with additional tensor fields q^\la{}_\m describing deviations \wt h^\la_a=q^\la{}_\m h^\m_a of hh. One can think of \wt h as being effective tetrad fields. We show that there exist gauge transformations which keep the background tetrad field hh and act on the effective fields by the general covariant transformation law. We come to Logunov's Relativistic Theory of Gravity generalized to dynamic connections and fermion fields.Comment: 12 pages, LaTeX, no figure

    Nucleon-nucleon wave function with short-range nodes and high-energy deuteron photodisintegration

    Full text link
    We review a concept of the Moscow potential (MP) of the NNNN interaction. On the basis of this concept we derive by quantum inversion optical partial potentials from the modern partial-wave analysis (PWA) data and deuteron properties. Point-form (PF) relativistic quantum mechanics (RQM) is applied to the two-body deuteron photodisintegration. Calculations of the cross-section angular distributions cover photon energies between 1.1 and 2.5 GeV. Good agreement between our theory and recent experimental data confirms the concept of deep attractive Moscow potential with forbidden SS- and PP-states.Comment: 31 pages, 9 figures. typos, extended formalism, review of the Moscow potential model adde

    Preasymptotic nature of hadron scattering vs small-x HERA Data

    Get PDF
    We emphasize that recently observed regularities in hadron interactions and deep-inelastic scattering are of preasymptotic nature and it is impossible to make conclusions on the true asymptotic behavior of observables without unitarization procedure. Unitarization is important and changes scattering picture drastically.Comment: LaTeX file, 9 pages; 4 tarred, gzipped and uuencoded figures in a separate fil

    New analytic unitarization schemes

    Full text link
    We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering. The standard class, which saturates at the black disk limit includes the standard eikonal representation, while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are independent of the functional form used for the unitarisation, and that U matrix and eikonal schemes can be extended to have similar properties. A common form of unitarisation is proposed interpolating between both classes. The correspondence with different nonlinear equations are also briefly examined.Comment: 6 pages, 10 figures, corrected typos, 1 fig. redro

    Hamiltonian anomalies of bound states in QED

    Full text link
    The Bound State in QED is described in systematic way by means of nonlocal irreducible representations of the nonhomogeneous Poincare group and Dirac's method of quantization. As an example of application of this method we calculate triangle diagram Para−Positronium→γγPara-Positronium \to \gamma\gamma. We show that the Hamiltonian approach to Bound State in QED leads to anomaly-type contribution to creation of pair of parapositronium by two photon.Comment: 12 pages, 2 figures. Proceedings of the conference "Symmetry Methods in Physics XV", July 12-16, 2011, Dubna, Russi
    • …
    corecore