10,088 research outputs found

    The Constitutionality and Legality of Internet Voting Post-Shelby County

    Get PDF
    The technological and electoral landscapes have changed drastically since the turn of the century. While it once might have made sense to view voting online as unconstitutional, as opposed to merely impractical, the expanded range of Internet access for minority communities has made that argument tenuous at best. While there still may exist practical and political reasons to avoid Internet voting, the Constitution no longer stands as an effective wall against the practice. Furthermore, the primary statutory obstacle to the implementation of Internet voting on a local level, the Voting Rights Act, has been greatly weakened by the recent Supreme Court decision in Shelby County. As such, now is the perfect time for state-level experimentation in the field of Internet voting

    Civil protective orders effective in stopping or reducing partner violence: challenges remain in rural areas with access and enforcement

    Get PDF
    Civil protective orders are a low cost, effective solution in either stopping or significantly reducing partner violence for women. While all women benefit from civil protective orders, this brief finds there are greater obstacles to enforcement in rural places, which result in less benefit for rural than urban women. The authors suggest that policies and services should be tailored to address community-specific barriers and differences such as hours of access, time it takes to obtain or serve an order, and access to information about the process

    Magnetic impurities in gapless Fermi systems: perturbation theory

    Full text link
    We consider a symmetric Anderson impurity model, with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Three facets of the problem are examined. First the non-interacting limit, which despite its simplicity contains much physics relevant to the U > 0 case: it exhibits both strong coupling (SC) states (for r 1), with characteristic signatures in both spectral properties and thermodynamic functions. Second, we establish general conditions upon the interaction self-energy for the occurence of a SC state for U > 0. This leads to a pinning theorem, whereby the modified spectral function is pinned at the Fermi level for any U where a SC state exists; it generalizes to arbitrary r the familiar pinning condition for the normal r = 0 Anderson model. Finally, we consider explicitly spectral functions at the simplest level: second order perturbation theory in U, which we conclude is applicable for r 1 but not for 1/2 < r < 1. Characteristic spectral features observed in numerical renormalization group calculations are thereby recovered, for both SC and LM phases; and for the SC state the modified spectral functions are found to contain a generalized Abrikosov-Suhl resonance exhibiting a characteristic low-energy Kondo scale with increasing interaction strength.Comment: 24 pages, 7 figures, submitted to European Physical Journal

    Single-particle dynamics of the Anderson model: a two-self-energy description within the numerical renormalization group approach

    Full text link
    Single-particle dynamics of the Anderson impurity model are studied using both the numerical renormalization group (NRG) method and the local moment approach (LMA). It is shown that a 'two-self-energy' description of dynamics inherent to the LMA, as well as a conventional 'single-self-energy' description, arise within NRG; each yielding correctly the same local single-particle spectrum. Explicit NRG results are obtained for the broken symmetry spectral constituents arising in a two-self-energy description, and the total spectrum. These are also compared to analytical results obtained from the LMA as implemented in practice. Very good agreement between the two is found, essentially on all relevant energy scales from the high-energy Hubbard satellites to the low-energy Kondo resonance.Comment: 12 pages, 6 figure

    Single-particle dynamics of the Anderson model: a local moment approach

    Full text link
    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valent and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.Comment: 26 pages, 9 figure

    Local quantum critical point in the pseudogap Anderson model: finite-T dynamics and omega/T scaling

    Full text link
    The pseudogap Anderson impurity model is a paradigm for locally critical quantum phase transitions. Within the framework of the local moment approach we study its finite-T dynamics, as embodied in the single-particle spectrum, in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi-liquid (Kondo screened) and local moment phases. The scaling spectra in both phases, and at the QCP itself, are obtained analytically. A key result is that pure omega/T-scaling obtains at the QCP, where the Kondo resonance has just collapsed. The connection between the scaling spectra in either phase and that at the QCP is explored in detail.Comment: 12 pages, 7 figure

    Dynamics of capacitively coupled double quantum dots

    Full text link
    We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime; and then towards and through the quantum phase transition to a charge-ordered (CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.Comment: 14 pages, 6 figure

    Spectral scaling and quantum critical behaviour in the pseudogap Anderson model

    Full text link
    The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.Comment: 7 pages, 2 figure
    corecore