8,139 research outputs found
Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment
The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics
Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)
The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs
Single-particle dynamics of the Anderson model: a local moment approach
A non-perturbative local moment approach to single-particle dynamics of the
general asymmetric Anderson impurity model is developed. The approach
encompasses all energy scales and interaction strengths. It captures thereby
strong coupling Kondo behaviour, including the resultant universal scaling
behaviour of the single-particle spectrum; as well as the mixed valent and
essentially perturbative empty orbital regimes. The underlying approach is
physically transparent and innately simple, and as such is capable of practical
extension to lattice-based models within the framework of dynamical mean-field
theory.Comment: 26 pages, 9 figure
FOCIS: A forest classification and inventory system using LANDSAT and digital terrain data
Accurate, cost-effective stratification of forest vegetation and timber inventory is the primary goal of a Forest Classification and Inventory System (FOCIS). Conventional timber stratification using photointerpretation can be time-consuming, costly, and inconsistent from analyst to analyst. FOCIS was designed to overcome these problems by using machine processing techniques to extract and process tonal, textural, and terrain information from registered LANDSAT multispectral and digital terrain data. Comparison of samples from timber strata identified by conventional procedures showed that both have about the same potential to reduce the variance of timber volume estimates over simple random sampling
The management of distal ulnar fractures in adults: a review of the literature and recommendations for treatment
The distal ulna represents the fixed point around which the radius and the hand acts in daily living. The significance of distal ulnar fractures is often not appreciated and often results in inadequate treatment in comparison to its larger counterpart; the radius. There is little guidance in the current literature as how to manage these fractures and their associated injuries. This paper aims to critically review the current literature and combine it with treatment suggestions based on the experience of the authors to help guide investigation and management of these often complex injuries
Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics
The pseudogap Anderson impurity model provides a paradigm for understanding
local quantum phase transitions, in this case between generalised fermi liquid
and degenerate local moment phases. Here we develop a non-perturbative local
moment approach to the generic asymmetric model, encompassing all energy scales
and interaction strengths and leading thereby to a rich description of the
problem. We investigate in particular underlying phase boundaries, the critical
behaviour of relevant low-energy scales, and single-particle dynamics embodied
in the local spectrum. Particular attention is given to the resultant universal
scaling behaviour of dynamics close to the transition in both the GFL and LM
phases, the scale-free physics characteristic of the quantum critical point
itself, and the relation between the two.Comment: 39 pages, 19 figure
Ecological Effects of Fear: How Spatiotemporal Heterogeneity in Predation Risk Influences Mule Deer Access to Forage in a Sky‐Island System
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands
Principles of Discrete Time Mechanics: II. Classical field Theory
We apply the principles discussed in an earlier paper to the construction of
discrete time field theories. We derive the discrete time field equations of
motion and Noether's theorem and apply them to the Schrodinger equation to
illustrate the methodology. Stationary solutions to the discrete time
Schrodinger wave equation are found to be identical to standard energy
eigenvalue solutions except for a fundamental limit on the energy. Then we
apply the formalism to the free neutral Klein Gordon system, deriving the
equations of motion and conserved quantities such as the linear momentum and
angular momentum. We show that there is an upper bound on the magnitude of
linear momentum for physical particle-like solutions. We extend the formalism
to the charged scalar field coupled to Maxwell's electrodynamics in a gauge
invariant way. We apply the formalism to include the Maxwell and Dirac fields,
setting the scene for second quantisation of discrete time mechanics and
discrete time Quantum Electrodynamics.Comment: 23 pages, LateX, To be published in J.Phys.A: Math.Gen: contact email
address: [email protected]
- …