29 research outputs found

    Spontaneously broken translational symmetry at edges of high-temperature superconductors: thermodynamics in magnetic field

    Get PDF
    We investigate equilibrium properties, including structure of the order parameter, superflow patterns, and thermodynamics of low-temperature surface phases of layered d_{x^2-y^2}-wave superconductors in magnetic field. At zero external magnetic field, time-reversal symmetry and continuous translational symmetry along the edge are broken spontaneously in a second order phase transition at a temperature T0.18TcT^*\approx 0.18 T_c, where TcT_c is the superconducting transition temperature. At the phase transition there is a jump in the specific heat that scales with the ratio between the edge length DD and layer area A{\cal A} as (Dξ0/A)ΔCd(D\xi_0/{\cal A})\Delta C_d, where ΔCd\Delta C_d is the jump in the specific heat at the d-wave superconducting transition and ξ0\xi_0 is the superconducting coherence length. The phase with broken symmetry is characterized by a gauge invariant superfluid momentum ps{\bf p}_s that forms a non-trivial planar vector field with a chain of sources and sinks along the edges with a period of approximately 12ξ012\xi_0, and saddle point disclinations in the interior. To find out the relative importance of time-reversal and translational symmetry breaking we apply an external field that breaks time-reversal symmetry explicitly. We find that the phase transition into the state with the non-trivial ps{\bf p}_s vector field keeps its main signatures, and is still of second order. In the external field, the saddle point disclinations are pushed towards the edges, and thereby a chain of edge motifs are formed, where each motif contains a source, a sink, and a saddle point. Due to a competing paramagnetic response at the edges, the phase transition temperature TT^* is slowly suppressed with increasing magnetic field strength, but the phase with broken symmetry survives into the mixed state.Comment: 12 pages, 9 figure

    Spontaneous symmetry-breaking at surfaces of dd-wave superconductors: influence of geometry and surface ruggedness

    Get PDF
    Surfaces of dd-wave superconductors may host a substantial density of zero-energy Andreev states. The zero-energy flat band appears due to a topological constraint, but comes with a cost in free energy. We have recently found that an adjustment of the surface states can drive a phase transition into a phase with finite superflow that breaks time-reversal symmetry and translational symmetry along the surface. The associated Doppler shifts of Andreev states to finite energies lower the free energy. Direct experimental verification of such a phase is still technically difficult and controversial, however. To aid further experimental efforts, we use the quasiclassical theory of superconductivity to investigate how the realization and the observability of such a phase are influenced by sample geometry and surface ruggedness. Phase diagrams are produced for relevant geometric parameters. In particular, critical sizes and shapes are identified, providing quantitative guidelines for sample fabrication in the experimental hunt for symmetry-breaking phases.Comment: 9 pages, 7 figure

    Graphene Nanogap for Gate Tunable Quantum Coherent Single Molecule Electronics

    Get PDF
    We present atomistic calculations of quantum coherent electron transport through fulleropyrrolidine terminated molecules bridging a graphene nanogap. We predict that three difficult problems in molecular electronics with single molecules may be solved by utilizing graphene contacts: (1) a back gate modulating the Fermi level in the graphene leads facilitate control of the device conductance in a transistor effect with high on/off current ratio; (2) the size mismatch between leads and molecule is avoided, in contrast to the traditional metal contacts; (3) as a consequence, distinct features in charge flow patterns throughout the device are directly detectable by scanning techniques. We show that moderate graphene edge disorder is unimportant for the transistor function.Comment: 8 pages, 6 figure

    Effect of point-contact transparency on coherent mixing of Josephson and transport supercurrents

    Full text link
    The influence of electron reflection on dc Josephson effect in a ballistic point contact with transport current in the banks is considered theoretically. The effect of finite transparency on the vortex-like currents near the contact and at the phase difference ϕ=π,\phi =\pi , which has been predicted recently \cite{KOSh}, is investigated. We show that at low temperatures even a small reflection on the contact destroys the mentioned vortex-like current states, which can be restored by increasing of the temperature.Comment: 6 pages, 8 Figures, Latex Fil

    Theory of Thermal Conductivity in High-Tc Superconductors below Tc: Comparison between Hole-Doped and Electron-Doped Systems

    Full text link
    In hole-doped high-Tc superconductors, thermal conductivity increases drastically just below Tc, which has been considered as a hallmark of a nodal gap. In contrast, such a coherence peak in thermal conductivity is not visible in electron-doped compounds, which may indicate a full-gap state such as a (d+is)-wave state. To settle this problem, we study the thermal conductivity in the Hubbard model using the fluctuation-exchange (FLEX) approximation, which predicts that the nodal d-wave state is realized in both hole-doped and electron-doped compounds. The contrasting behavior of thermal conductivity in both compounds originates from the differences in the hot/cold spot structure. In general, a prominent coherence peak in thermal conductivity appears in line-node superconductors only when the cold spot exists on the nodal line.Comment: 5 pages, to be published in J. Phys. Soc. Jpn. Vol.76 No.

    Hamiltonian approach to the ac Josephson effect in superconducting-normal hybrid systems

    Get PDF
    The ac Josephson effect in hybrid systems of a normal mesoscopic conductor coupled to two superconducting (S) leads is investigated theoretically. A general formula of the ac components of time-dependent current is derived which is valid for arbitrary interactions in the normal region. We apply this formula to analyze a S-normal-S system where the normal region is a noninteracting single level quantum dot. We report the physical behavior of time-averaged nonequilibrium distribution of electrons in the quantum dot, the formation of Andreev bound states, and ac components of the time-dependent current. The distribution is found to exhibit a population inversion; and all Andreev bound states between the superconducting gap Δ\Delta carry the same amount of current and in the same flow direction. The ac components of time-dependent current show strong oscillatory behavior in marked contrast to the subharmonic gap structure of the average current.Comment: 23 pages, 10 figures, LaTe

    Josephson current in s-wave superconductor / Sr_2RuO_4 junctions

    Full text link
    The Josephson current between an s-wave and a spin-triplet superconductor Sr2_2RuO4_4 (SRO) is studied theoretically. In spin-singlet / spin-triplet superconductor junctions, there is no Josephson current proportional to sinϕ\sin \phi in the absence of the spin-flip scattering near junction interfaces, where ϕ\phi is a phase-difference across junctions. Thus a dominant term of the Josephson current is proportional to sin2ϕ\sin 2\phi . The spin-orbit scattering at the interfaces gives rise to the Josephson current proportional to cosϕ\cos\phi, which is a direct consequence of the chiral paring symmetry in SRO

    Josephson effect in d-wave superconductor junctions in a lattice model

    Full text link
    Josephson current between two d-wave superconductors is calculated by using a lattice model. Here we consider two types of junctions, i.e.i.e., the parallel junction and the mirror-type junction. The maximum Josephson current (Jc)(J_{c}) shows a wide variety of temperature (TT) dependence depending on the misorientation angles and the types of junctions. When the misorientation angles are not zero, the Josephson current shows the low-temperature anomaly because of a zero energy state (ZES) at the interfaces. In the case of mirror-type junctions, JcJ_c has a non monotonic temperature dependence. These results are consistent with the previous results based on the quasiclassical theory. [Y. Tanaka and S. Kashiwaya: Phys. Rev. B \textbf{56} (1997) 892.] On the other hand, we find that the ZES disappears in several junctions because of the Freidel oscillations of the wave function, which is peculiar to the lattice model. In such junctions, the temperature dependence of JcJ_{c} is close to the Ambegaokar-Baratoff relation.Comment: 17 pages, 10 figures, using jpsj2.cls and oversite.st
    corecore