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PHYSICAL REVIEW B, VOLUME 65, 075315
Hamiltonian approach to the ac Josephson effect in superconducting-normal hybrid systems
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Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Que´bec, Canada H3A 2T8

Jian Wang
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China

~Received 9 August 2001; published 30 January 2002!

The ac Josephson effect in hybrid systems of a normal mesoscopic conductor coupled to two superconduct-
ing ~S! leads is investigated theoretically. A general formula of the ac components of time-dependent current is
derived, which is valid for arbitrary interactions in the normal region. We apply this formula to analyze a
S-normal-S system where the normal region is a noninteracting single-level quantum dot. We report the
physical behavior of time-averaged nonequilibrium distribution of electrons in the quantum dot, the formation
of Andreev resonance states, and ac components of the time-dependent current. The distribution is found to
exhibit a population inversion; and all Andreev resonance states between the superconducting gapD carry the
same amount of the current and in the same flow direction. The ac components of time-dependent current show
strong oscillatory behavior in marked contrast to the subharmonic gap structure of the average current.

DOI: 10.1103/PhysRevB.65.075315 PACS number~s!: 73.40.Gk, 74.50.1r, 73.23.2b, 72.15.Nj
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I. INTRODUCTION

Quantum-transport properties of mesoscopic conduc
coupled to two superconducting~S! leads have been exten
sively investigated in the last decade both theoretically
experimentally.1,2 The mesoscopic conductor in question
usually not a superconductor itself, but it can be a quan
point contact~QPC!,3–5 a quantum dot~QD!,6–9 a tunnel
barrier, a normal metal,10,11 and even a molecule, such as
nanotube.12–14The physics of these hybrid device structure
in the form ofS-normal-S, has profound implications to bot
fundamental understanding of the quantum transport at a
duced dimensionality and to practical applications in na
electronics.

One of the main transport characteristics of aS-normal-S
device structure is that particles in the normal region c
undergo multiple Andreev reflections by the two superc
ducting leads. If the normal region is ballistic, a conseque
of the coherent superposition of these multiple Andreev
flections is the formation of Andreev bound states.1,15 The
Andreev bound states are important because they carry
rent including the supercurrent. On the other hand, if
normal region is diffusive, a so-called supercurrent-carry
density of states, instead of the Andreev bound states, g
the ability for carrying supercurrent.16 The multiple Andreev
reflection is also known to generate subharmonic gap st
ture in the behavior ofI 05I 0(V), where I 0 is the average
current andV is the bias voltage.3–8,10 More recently, the
subharmonic gap structure is used to measure transmis
probability of each channel in a multichannel QP
device.17,18

Another important and interesting transport characteri
of S-normal-S devices is the Josephson effect that gives r
to a dc supercurrent at zero bias, and an ac current at non
bias. Previous theoretical analyses have focused on th
Josephson effect at zero bias,9 and the subharmonic ga
structure of theaverage current at a nonzero bias.3–8,10

However, the ac Josephson effect, which arises at a non
bias, produces a current that is a function of timet. There-
0163-1829/2002/65~7!/075315~11!/$20.00 65 0753
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fore, it is an important task to theoretically understand
time-dependent current in addition to understanding its ti
average. So far there have been some literatures that re
time-dependent current forS-normal-S devices.4,5,19–22

For example, Cuevaset al. have investigated the ac compo
nent of the time-dependent current for aS-QPC-S system;4

Bratus et al.5 have investigated the time-dependent curr
in a S-quantum-constriction-S system by considering an ar
bitrary normal electron transparency and discussed the p
erty of the current at the small bias limit; Hurdet al. have
studied the ac Josephson current in a device in which
two superconducting leads have different superconduc
gaps.21,22 Recently, some efforts have also been devoted
the study of time-dependent current in ad-wave supercon-
ducting system.23,24 However, in these previous works, th
normal region of theS-normal-S device was simplified to a
single barrier or a single impurity, and electron-electron
teraction in the normal region has been neglected. The su
conducting lead may be closely coupled to the barrier4,5 or
with a certain distance.21,22The barrier has been described b
a simple constant transmission coefficient independent of
ergy e. Given the interesting physics already discovered
these previous investigations, it is indeed not difficult to e
pect that even richer physics would arise if the normal reg
has its own electronic structure and/or electron-electron
teractions.

It is the purpose of this work to further investigate the
Josephson effect inS-normal-S device systems, and we focu
on issues not resolved by the previous analysis. In particu
we consider a mesoscopicS-normal-S device with an arbi-
trary normal region that may have its own electronic stru
ture and/or strong electron-electron interactions: for this g
eral situation we have derived the expression of the
current. As an application we then investigate a specific c
in which the normal region is a ballistic quantum dot~i.e., a
double-barriers structure! having a noninteracting single en
ergy level, for which we investigate the intradot nonequili
rium distribution of electrons, the local density of sta
©2002 The American Physical Society15-1
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QING-FENG SUN, HONG GUO, AND JIAN WANG PHYSICAL REVIEW B65 075315
~LDOS!, and the time-dependent current. Our main findin
are as follows.

~i! The intradot electronic distribution shows a populati
inversion property. This property is distinctly and qualit
tively different from that of the case where the normal reg
is diffusive.

~ii ! At small bias voltages such thateV,D, whereD is
the superconducting gap, a series of Andreev resona
states is found to emerge within the gap. Their weights
not the same but they carry equal amount of current in
same direction, as well, their electronic distributions are
1/2.

~iii ! The ac current component versus biasV shows an
oscillatory behavior. The amplitude of oscillation of thenth
component is largest at aboutV5D/n. At small bias, the
high-order components quickly increase, and the tim
dependent current versus timet deviates from a sinelike
curve.

The rest of the paper is organized as follows. In Sec.
the model Hamiltonian is presented and a general form
for the ac current component is derived. In Sec. III, ac
sephson effect for a simpleS-normal-S device with a nonin-
teracting normal region is investigated. The intradot el
tronic distributions, the Andreev resonance states, and
current components are presented in this section. Final
brief summary is given in Sec. IV.

II. MODEL AND FORMULATION

We assume theS-normal-S device system to be describe
by the following Hamiltonian:25,26

H5 (
a5L,R

Ha1Hcen1HT , ~1!

where

Ha5(
k,s

eakaaks
† aaks

1(
k

@Daaak↓aa2k↑1Daaa2k↑
† aak↓

† #, ~2!

Hcen5(
j ,s

e j scj s
† cj s1Hint~$cj s

† %,$cj s%, . . . !, ~3!

HT5 (
k, j ,s,a

ta jexpF i

2 S fa1
2eVa

\
t D Gaaks

† cj s1H.c. ~4!

Ha (a5L,R) describes the left/right BCS superconducti
lead with the superconducting energy gapDa . Hcen is
the Hamiltonian of the normal region of the device, a
s

ce
re
e
ll

-

I,
la
-

-
ac
a

cj s
† (cj s) are the creation~annihilation! operators of an

electron in statej s of the normal region.Hint models
interactions in the normal region whose form depends
specific physics problems under consideration. In this s
tion we consider the general case without specifying
concrete form. In deriving the formula for the transpo
current, we permit the device-normal~central! region to have
various interactions, such as the electron-electron Coulo
interaction, ( j ,s; j 1 ,s1( j sÞ j 1s1)U j s; j 1s1

cj s
† cj scj 1s1

† cj 1s1
; the

electron-phonon interaction, ( j ,s,qM jqcj s
† cj s(dq

†1d2q)
1(q\vqdq

†dq ; the tunneling coupling between differen
states of the normal region,( i , j ,s( i . j )(t i j cis

† cj s1H.c.); and
so on.HT of Eq. ~1! denotes the tunneling Hamiltonian be
tween the superconducting leads and the normal region
the device, andta j is the hopping matrix. In order to obtai
the Hamiltonian~1!, we have performed a unitary transfo
mation, then the superconducting initial phasefa and the
terminal voltageVa emerge in the HamiltonianHT .25,26

The total current of superconducting leada ~e.g.,a5L)
flowing into the device-normal region can be calculated fro
evolution of the total number operator of electrons in th
lead, NL5(k,saLks

† aLks . Then we have26–28 ~in units of
\51!

I L~ t !52e^ṄL~ t !&5 ie^@NL ,H#&

52e Re(
k,i

Tr$Ĝi ,Lk
, ~ t,t ! t̂ Li~ t !ŝz%, ~5!

where

Ĝi ,Lk
, ~ t,t1![ i S ^aLk↑

† ~ t1!ci↑~ t !& ^aL2k↓~ t1!ci↑~ t !&

^aLk↑
† ~ t1!ci↓

† ~ t !& ^aL2k↓~ t1!ci↓
† ~ t !&D

is the distribution Green’s function in the 232 Nambu rep-
resentation, andŝz is the Pauli matrix. In this paper, we us
the notation that ‘‘Â’’ means quantityA to be a 232 matrix.

To proceed we need to solve the Green’s funct
Ĝi ,Lk

, (t,t). We assume that the leads do not have any in
actions except the quadratic pair potential correlation,
have26,28

Ĝi ,Lk
, ~ t,t !5(

j
E dt1@Ĝi j

r ~ t,t1! t̂ L j* ~ t1!ĝLk
, ~ t1 ,t !

1Ĝi j
,~ t,t1! t̂ L j* ~ t1!ĝLk

a ~ t1 ,t !#, ~6!

where ĝLk
,,a(t1 ,t) is the exact Green’s function of the le

superconducting lead.4,25 t̂ L j (t) in Eqs.~5! and ~6! is a 232
hopping matrix defined by
t̂ L j~ t !5S tL jexpF i S fL

2
1eVLt D G 0

0 2tL j* expF2 i S fL

2
1eVLt D G D . ~7!

075315-2
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Ĝi j
r (t,t1) and Ĝi j

,(t,t1) are the retarded and distributio
Green’s functions in the device normal region. They are
fined by

Ĝi j
r ~ t,t1!52 iu~ t2t1!

3S ^$ci↑~ t !,cj↑
† ~ t1!%& ^$ci↑~ t !,cj↓~ t1!%&

^$ci↓
† ~ t !,cj↑

† ~ t1!%& ^$ci↓
† ~ t !,cj↓~ t1!%&

D ,

~8!

Ĝi j
,~ t,t1!5 i S ^cj↑

† ~ t1!ci↑~ t !& ^cj↓~ t1!ci↑~ t !&

^cj↑
† ~ t1!ci↓

† ~ t !& ^cj↓~ t1!ci↓
† ~ t !&D . ~9!

SubstitutingĜj ,Lk
, (t,t) into Eq. ~5!, assumingtL j is real, the

currentI L(t) can be expressed in terms of the Green’s fu
tions of the device normal region, as
c
an
c
u

xt

-

t
io

rr

ier

07531
-

-

I L~ t !522e Im E
2`

t

dt1E de

2p
ei e(t2t1)Tr$@ r̃L~e! f L~e!

3Ĝr~ t,t1!1bL* ~e!Ĝ,~ t,t1!#GLŜ̃Lŝz%, ~10!

wheref L/R(e)51/(ee/KBT11) is the Fermi distribution func-
tion of electrons in the left/right superconducting lead.bL(e)
is defined as25,29 bL(e)5e/( iADL

22e2) for DL.ueu, and
bL(e)5ueu/(Ae22DL

2) for DL,ueu. r̃L(e)5Re@bL(e)#
5u(ueu2D)ueu/A(e22DL

2) is the dimensionless BCS den
sity of states, i.e., the ratio of the superconducting density
statesrL

S(e) to the normal density of statesrL
N(e). G is the

linewidth matrix function defined byGL; i j 52ptLi tL j* rL
N(e),

in which we have assumed thatGL is independent energye.30

In this paper, we use boldface letters to denote quanti
representing matrices whose matrix elements are calcul

using statesi , j of the device-normal region. Finally,Ŝ̃L is a
compact notation,
Ŝ̃L~e!5S exp@2 ieVL~ t12t !# 2
D

e
exp@2 ifL2 ieVL~ t11t !#

2
D

e
exp@ ifL1 ieVL~ t11t !# exp@ ieVL~ t12t !#

D . ~11!
n’s

e

as

s
ent
The formula~10! describes the current using Green’s fun
tions of the normal region. It is a general formula and c
therefore, be applied to situations involving arbitrary intera
tions in the normal region and is also applicable at noneq
librium ~e.g., at a high biasV). If the normal region is
coupled to multiple superconducting leads or to some e
normal leads, Eq.~10! is still valid.

In the following we fixVL50,31 so that the left supercon

ducting lead is taken as the potential ground, thenŜ̃L reduces
to

Ŝ̃L~e!5S 1 2
D

e
e2 ifL

2
D

e
eifL 1

D . ~12!

Note that the superconducting phase difference between
two leads is a time-dependent periodic function with a per
T52p/v, wherev52 eV andV5VL2VR is the bias volt-
age between the leads. Therefore, the time-dependent cu
I L(t) is also a periodic function with the same periodT and
the Green’s functions have the propertyG(t,t1)5G(t
1T,t11T).32 Then we can take the conventional Four
expansion for the currentI L(t)

I L~ t !5(
n

I Lneinvt, ~13!
-
,
-
i-

ra

he
d

ent

and take the double Fourier expansion for the Gree
function4,30

G~ t,t1!5(
n

einvt1E de

2p
e2 i e(t2t1)Gn~e!. ~14!

To simplify notation in the following analysis, we introduc
quantitiesGmn(e)[Gn2m(e1mv) andIL(t),

IL~ t !522eE
2`

t

dt1E de

2p
ei e(t2t1)Tr$@ r̃L~e! f L~e!Ĝr~ t,t1!

1bL* ~e!Ĝ,~ t,t1!#GLŜ̃Lŝz%, ~15!

so thatI L(t)5Im@IL(t)#.
Then the Fourier component of ac current is obtained

I Ln5
i

2
~IL,2n* 2ILn!, ~16!

and

ILn522eE de

2p
TrH F f L~e!r̃L~e!Ĝ2n0

r ~e!

1
1

2
bL* ~e!Ĝ2n0

, ~e!GGLŜ̃LŝzJ . ~17!

Equations~16! and ~17! are the first central results of thi
work. They describe ac components of the time-depend
5-3
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current of aS-normal-S device system in terms of the Fourie
component of the Green’s functionĜ2n0

r (e) andĜ2n0
, (e) of

the normal region. These formulas, Eqs.~13!, ~16!, and~17!,
are valid for arbitrary interactions the normal region m
have, for nonequilibrium situations, and for devices w
other normal leads. They cannot, however, be applied to
vices with more than two superconducting leads.

When bias voltageV is zero the currentI L(t) is indepen-
dent to timet, then the current reduces as

I L522e Im E de

2p
TrH F f L~e!r̃L~e!Ĝr~e!

1
1

2
bL* ~e!Ĝ,~e!GGLŜ̃LŝzJ . ~18!

III. NONINTERACTING NORMAL REGION

In this section we apply the general expressions for the
current derived above to an example of aS-normal-S device
where the normal region has no electron-electron inte
tions. For this situation, the HamiltonianHcen can be written
as

Hcen5(
j ,s

e j scj s
† cj s1 (

i , j ,s( i . j )
~ t i j cis

† cj s1H.c.!

[(
s

Hcen,s . ~19!

This Hamiltonian describes a multilevel noninteracting qu
tum dot for whicht i j 50. It also can describe a typical tigh
binding lattice model, in whicht i j Þ0, the second term in
Eq. ~19! denotes the coupling between different lattice sit

For the specificHcen of Eq. ~19!, we can solve the
07531
e-

c

c-

-

.

Green’s functionsĜmn
r (e) and Ĝmn

, (e) using the Dyson

equation and the Keldysh equation:Ĝr5ĝr1ĜrŜr ĝr , and
Ĝ,5ĜrŜ,Ĝa. Hereĝr is the exact Green’s function for th
device-normal region without coupling to the leads, and
can be easily derived as

ĝr~ t,t1!52 iu~ t2t1!

3S exp@2 iH cen↑~ t2t1!# 0

0 exp@ iH cen↓~ t2t1!#
D .

~20!

Ŝr andŜ, are the retarded and distribution self-energies d
to coupling to the leads, withŜr (,)(t,t1)5ŜL

r (,)(t,t1)

1ŜR
r (,)(t,t1) and

ŜL(R),i j
r ~ t,t1!5(

k
t̂ L~R!i* ~ t !ĝL(R)k

r ~ t,t1! t̂ L(R) j~ t1!

52 iu~ t2t1!E de

2p
GL(R),i j bL(R)~e!

3e2 i e(t2t1)Ŝ̃L(R) , ~21!

ŜL(R),i j
, ~ t,t1!5(

k
t̂ L~R!i* ~ t !ĝL(R)k

, ~ t,t1! t̂ L(R) j~ t1!

5 i E de

2p
GL(R),i j f L(R)~e!r̃L(R)~e!

3e2 i e(t2t1)Ŝ̃L(R) . ~22!

The Fourier spaces form of these quantities are easily
tained~notice thatVL50 andVR52V)
ĝmn
r ~e!5S dmn /~em2Hcen↑1 i01! 0

0 dmn /~em1Hcen↑1 i01!
D , ~23!

ŜL;mn
r ~e!52

i

2
GLdmnbL~em!Ŝ̃L~em!, ~24!

ŜR;mn
r ~e!52

i

2
GRS dmnbR~em1~1/2!! dm,n21bR~em1~1/2!!

2DR

em1~1/2!
e2 ifR

dm,n11bR~em2~1/2!!
2DR

em2~1/2!
eifR dmnbR~em2~1/2!!

D , ~25!

ŜL;mn
, ~e!5 i GLdmnf L~em!r̃L~em!Ŝ̃L~em!, ~26!

ŜR;mn
, ~e!5 i GRS dmnf L~em1~1/2!!r̃R~em1~1/2!! dm,n21f L~em1~1/2!!r̃R~em1~1/2!!

2DR

em1~1/2!
e2 ifR

dm,n11f L~em2~1/2!!r̃R~em2~1/2!!
2DR

em2~1/2!
eifR dmnf R~em2~1/2!!r̃R~em2~1/2!!

D ,

~27!
5-4
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HAMILTONIAN APPROACH TO THE AC JOSEPHSON . . . PHYSICAL REVIEW B65 075315
whereex5e1xv. Similarly, the Fourier spaces form of th
Keldysh equation and the Dyson equation are

Ĝmn
, ~e!5 (

l 1 ,l 2
Ĝml1

r ~e!Ŝl 1l 2
, ~e!Ĝl 2n

a ~e!, ~28!

Ĝmn
r ~e!5ĝmn

r ~e!dmn1(
l

Ĝml
r ~e!Ŝln

r ~e!ĝnn
r ~e!. ~29!

If Ĝmn
r (e) has been solved, then from the Keldysh equat

~28!, Ĝmn
, (e) can be obtained straightforwardly. Therefor

in the following we only need to solve the retarded Gree
function Ĝmn

r (e).
From the Dyson equation~29! we have

Gmn;11
r 5gmn;11

r dmn1Gmn;11
r Snn;11

r gnn;11
r

1(
l

Gml;12
r Sln;21

r gnn;11
r , ~30!

Gmn;12
r 5Gmn;12

r Snn;22
r gnn;22

r 1(
l

Gml;11
r Sln;12

r gnn;22
r ,

~31!

where we have suppressed the argumente. From Eq.~31!,
one has

Gmn;12
r 5(

l
Gml;11

r Sln;12
r 1

gnn;22
r 21 2Snn;22

r
. ~32!

In here,gr 21 is (gr)21. Substituting this expression to Eq
~30! one easily finds

Gmn;11
r 5

dmn

gnn;22
r 21 2Snn;22

r
1(

l
Gml;11

r Bln , ~33!

where

Bmn~e![(
l

Sml;12
r 1

gl l ;22
r 212Sl l ;22

r
Sln;21

r 1

gnn;11
r 21 2Snn;11

r
.

~34!

NoteBmnÞ0 only whenm5n,n61. The quantityBmn has a
clear physical meaning: it describes the intensity of Andre
reflection processes, an example is shown in Fig. 1 in wh
a particle in the normal region undergoes twice Andreev
flections. Then by iterating Eq.~33!, Gmn;11

r can be formally
solved,

Gmn;11
r 5

dmn

gnn;11
r 21 2Snn;11

r
1

1

gmm;11
r 21 2Smm;11

r
Ymn , ~35!

where

Ymn5Bmn1(
l 1

Bml1
Bl 1n1 (

l 1 ,l 2
Bml1

Bl 1l 2
Bl 2n1•••

5Bmn1(
l

BmlY ln . ~36!
07531
n

,
s

v
h
-

Similarly, the quantityYmn(e) has a clear physical meaning
it gives the intensity of the process for which an electr
having initial energye1nv ends up with final energye
1mv after going through all possible multiple Andreev r
flections in the normal region. Equation~36! can only be
solved numerically and afterYmn is solved, from Eqs.~35!
and ~32! Gmn;11

r and Gmn;12
r can be obtained immediately

Finally, Gmn;21
r and Gmn;22

r can also be calculated using th
following equations, which are derived from the Dyso
equation:

Gmn;21
r 5(

l

1

gmm;22
r 21 2Smm;22

r
Sml;21

r Gln;11
r , ~37!

Gmn;22
r 5

dmn

gmm;22
r 21 2Smm;22

r
1(

l

1

gmm;22
r 21 2Smm;22

r
Sml;21

r Gln;12
r .

~38!

With Ĝmn
r andĜmn

, solved, from Eq.~17! the ac componen
and time-dependent current can be calculated without fur
complications.

In the rest of this section, we present numerical resu
for which some further simplifications are made. We redu
the device-normal region to a quantum dot with a sp
degenerate single level, i.e.,Hcen5(sedcs

†cs . For this case
the boldface matrices reduce to aC number. We also take
D5DL5DR51 as the energy unit and only consider devic
with symmetric barriers (GL5GR). It should be mentioned
that since we have assumed a spin-independent intr
level ed and hopping elementstL(R) , ^c↑

†(t1)c↑(t)& should be
equal to ^c↓

†(t1)c↓(t)&. Following this we haveG11
, (t,t1)

1G22
, (t1 ,t)52@G11

r (t,t1)2G11
a (t,t1)# and Ĝ,(t,t1)

52@Ĝ,(t1 ,t)#†.33 The Fourier forms areGmn;11
, (e)

1G2n,2m;22
, (2e)52@Gmn;11

r (e)2Gnm;11
r* (e)# and Ĝnm

, (e)

FIG. 1. A schematic diagram for the transport process consis
of two Andreev reflections.~a!. The particle is first Andreev re-
flected by the left superconducting lead, then by the right superc
ducting lead. This is described by the quantityB01(e). After this
process, the particle energy reduces by 2 eV~i.e., v52 eV!. ~b!.
The particle is first Andreev reflected by the left~right! lead, fol-
lowed by another reflection at the same lead. This process is
scribed by quantityB00(e). After this process, the particle energ
does not change.~c!. The particle is first Andreev reflected by th
right lead, then by the left lead. It is described by quantityB0,21(e).
After this process, the particle energy rises 2 eV. All processes w
an even number Andreev reflections can be decomposed to the
processes plotted here. All processes with an odd number of
dreev reflections can be decomposed to the even case plus one
reflection.
5-5



g
la

u

er
c
-

he

c-
er

n

p
h

ec

e
ere-

s-

ure
ons
he
or-

t

n-

he
at

ry

s at

of
e
ling
r,
he

a

e
is

en
s

th

or
ost

ias

es
s.

eft
-

su

n-
-
re

QING-FENG SUN, HONG GUO, AND JIAN WANG PHYSICAL REVIEW B65 075315
52@Ĝmn
, (e)#†. These relationships provide very stron

checks on our analytical derivations and numerical calcu
tions which we present in the following sections.

A. Intradot distribution of electrons

In this section we present results of the intradot distrib
tion of electrons for theS-normal-S device. Owing to the
finite bias voltageV, the current, intradot occupation numb
of electrons, LDOS, and the intradot distribution of ele
trons, are all functions of the timet. The time-average occu
pation number of electrons on the intradot state↑ is ~same
for state↓!

^n↑~ t !& t52 i ^G11
, ~ t,t !& t52 i E de

2p
G00;11

, ~e!. ~39!

The integrand of Eq.~39!, (2 i /2p)G00;11
, (e), is the time-

averaged occupation number of electrons with energye.
Here, subscript ‘‘11’’ are indexes of the 232 Nambu matrix
element, and ‘‘00’’ are indexes of Fourier component. T
average LDOS is given byD(e)52(1/p)Im@G00;11

r (e)
1G00;22

r (2e)#. The average intradot distribution of ele
trons can be obtained from the average occupation numb
energye and the averageD(e),34

f d~e!5
iG00;11

, ~e!

2 Im@G00;11
r ~e!#

. ~40!

It is important to emphasize that the distribution of electro
can be experimentally measured.35,36 For example, recently
Pierreet al.have measured36 this distribution for aS-normal-
S device where the normal region is a diffusive mesosco
metallic wire. They reported a multiple-step structure for t
distribution of electrons in that device.36

Figure 2 shows the average intradot distribution of el

FIG. 2. Time-averaged intradot distribution of electrons ver
energye at largeG, GL5GR51000D. TemperatureKBT50.05D,
ed50, d50 ~d is the inelastic scattering rate in two superco
ducting leads!, and fL5fR50. Note the fact that the time
averaged distribution, LDOS, and the ac components of the cur
are all independent with initial values offL andfR at d50. Inset:
schematic diagram showing a multiple~two! Andreev reflection
process.
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trons at different bias voltageV for our system with a very
large couplingG. When G is large, coupling between th
superconducting leads and the normal region is strong, th
fore the device behaves in a manner similar to aS-ballistic-
normal-conductor-S system. The property of the electron di
tribution in this situation is the following. When min(VL
2D,VR2D),e,max(VL1D,VR1D), the distribution is a
constant, i.e.,f d(e);1/2 for symmetric couplings. Whene
goes away from this region, the distribution quickly rises~or
drops! to unity ~or to zero! for e,min(VL2D,VR2D) @or for
e.max(VL1D,VR1D)].

To contrast with the experimental results of Pierreet al.36

and the theoretical results of Bezuglyiet al.,37 here the dis-
tribution is a constant instead of the multiple-step struct
between the gap, even though multiple Andreev reflecti
do occur in our system. This difference originates from t
different property of the central device region, i.e., our n
mal region is ballistic while that in Pierreet al.experiment it
is diffusive.36 In order to explain it in more detail, the inse
of Fig. 2 shows a particular multiple~two! Andreev reflec-
tion process. To start, an incident electron atAi below the
gap of the left lead tunnels into the QD, it passes two A
dreev reflections~through the points labeled asA1 –A6) in-
side the QD and finally tunnels into the right lead~at Ae)
which is higher than the gap of the right lead. Due to t
ballistic nature of the QD, the distribution of electrons
point A1 is the same as atA2, the distribution of holes atA3
is the same as atA4, while distribution of electrons atA5 is
the same as atA6. WhenG is large, the probability of An-
dreev reflection inside the QD within the energy gap is ve
close to unity,38 and hence the hole distribution atA3 is, to a
very good extent, the same as the distribution of electron
A2. Similarly the hole distribution atA4 is approximately
the same as the electron distribution atA5. We hence con-
clude that for the ballistic normal region, the distribution
particles ~electrons and holes! along this path is the sam
everywhere, except at the abrupt change during the tunne
process atAi and Ae from and to the two leads. Moreove
for symmetric barriers, the distribution of particles along t
A1 –A6 path must be 1/2. This explains why we obtained
constant 1/2 distribution at min(VL2D,VR2D),e,max(VL
1D,VR1D) as shown in Fig. 2. This also explains why w
expect a different distribution when the normal region
diffusive: for a diffusive conductor the distribution atA1
andA2 must be different due to diffusive scattering betwe
the two points, therefore the distribution of particle
will continuously vary from one to zero along the pa
A1 –A6.

Next, we investigate the distribution of electrons f
G;D, the results are shown in Fig. 3. For this case, a m
prominent behavior off d(e) is that it oscillates as a function
of thee. The oscillations also become more rapid when b
voltageV is reduced. An oscillatoryf d(e) means its value is
not necessarily smaller for largere, hence a ‘‘population in-
version’’ is possible. This population inversion originat
from the nonmonotonic probability of Andreev reflection
For example,f d(e) has a dip ate5VR2D, due to the fol-
lowing reason. For an incident electron coming from the l
lead with energyVR2D, this electron has a small but non

s

nt
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zero probability to pass the left barrier. After tunnelin
through, it reaches the right barrier where an Andreev refl
tion occurs. Because this electron has energye5VR2D, the
Andreev reflection occurs with probability one.38 This means
that the electron with energyVR2D is difficult to tunnel into
the QD, but it is easy to leave the QD after tunneling into
Therefore, the distribution of electrons at this energye is
very small. Whene deviates fromVR2D, the probability of
Andreev reflection decreases leading to a largerf d , hence
we expect a dip inf d to emerge ate5VR2D.

B. Local density of states

In this section, we investigate another important quant
the average LDOS. We will mainly discusses Andreev re
nance states at a finite biasV.39,40 If bias V.2D, multiple
Andreev reflections are very weak hence no Andreev re
nance states can form in the QD. In this case the intra
level ed is only slightly shifted due to a nonzero real part
the self-energyS r , the level half-width is still on the scale o
GL/R , and extra structures~a dip and a peak! emerge in the
curves of D(e) versuse at the superconducting gap~not
shown in here!.

Much more interesting is the case ofV,D, shown in Fig.
4 at different biasV. A series of very narrow peaks emerge
D(e), clearly indicating the formation of Andreev resonan
states inside the QD. Note that they are not rigorous bo
states but are quasibound states with a finite lifetime,
after many Andreev reflections the particle can leave the Q
The half-width of Andreev resonance states is much n
rower thanG. With a decreasing biasV, they become even
narrower with a higher intensity. The average distance
tween two successive Andreev resonance states is aboueV.
When neV and (n11)eV (n50,61,62, . . . ) arewithin
the gap, there exists an Andreev resonance state betwee
5neV and (n11)eV. Moreover, these Andreev resonan
states are symmetrically distributed at the two sides ofVL
and VR . This means the following: when an incident ele
tron from below the gap aligns perfectly with an Andre
resonance state of the QD, even after many Andreev re
tions it will always stay on the Andreev resonance state u
it leaves the QD@see inset of Fig. 4~a!#. Along this path, the

FIG. 3. Time-averaged intradot distribution of electrons ver
energye at general QD parameters,GL5GR51.5D. Other param-
eters are the same as those of Fig. 2.
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particle goes through all Andreev resonance states, an
resonance multiple Andreev reflection occurs. Occasiona
a quenching of Andreev resonance state is observed to o
In this case, a specific Andreev resonance state may h
very low LDOS at a specific biasV, an example is indicated
by the arrow in Fig. 4~b!.

The results of Fig. 4 is obtained by fixing the intrad
level ed to zero ~i.e., at the center of the gap!. Next, we
investigate how Andreev resonance states are affected w
edÞ0, the results are shown in Fig. 5. WithedÞ0, the An-
dreev resonance states are shifted in their positions, but
physical characteristics are the same as those ofed50. The
amount of shift is noted but much smaller and two succe
sive Andreev resonance states are shifted in opposite d
tions. If an Andreev resonance state is in the energy ra

s

FIG. 4. Time-averaged LDOS versuse at different biasV.
KBT50.1D, GL5GR50.8D, ed50, andd50. The downward ar-
row in ~b! points to an Andreev resonance state with a very sm
LDOS. Inset in~a!: schematic diagram showing a multiple Andree
reflection that passes through the Andreev resonance states
cated by the thick solid lines in the QD.

FIG. 5. Time-averaged LDOS versuse at different level posi-
tionsed . VR520.3D and other parameters are the same as thos
Fig. 4. Different curves correspond toed50.15D, 0D, 20.15D,
20.30D, and20.45D, along the arrow direction.
5-7



e

m

s

t a
f

a
n

c

f
an
b

s
on
h

in

ur-
reev

the

eri-

c
dif-
with

of

-

a
is

o a

v-
ion
of

-
o

QING-FENG SUN, HONG GUO, AND JIAN WANG PHYSICAL REVIEW B65 075315
from e5neV to (n11)eV, it stays in this range at any valu
of ed . Their heights vary withed , whened is in the range of
neV to (n11)eV, the peak in this range reaches a maximu
value.

An important property of the Andreev resonance state
their ability to carry current. From Eqs.~16! and ~17!, the
time-averaged current densityj 0(e) is obtained to be

j 0~e!52
e

p
Im TrH F f L~e!r̃L~e!Ĝ00

r ~e!

1
1

2
bL* ~e!Ĝ00

, ~e!GGLŜ̃LŝzJ . ~41!

The current density is related to time-averaged curren
I 05*de j 0(e). In Fig. 6, we show intradot distribution o
electronsf d @solid curve in Fig. 6~a!#, LDOS @dotted curve in
Fig. 6~a!#, and the time-averaged current density@Fig. 6~b!#
j 0(e). Several observations are in order.

~i! Although f d(e) is oscillating between 0 and 1 in
complicated manner, its value at each Andreev resona
state~the peak positions of the dotted curve! is always 1/2.
This is because resonant multiple Andreev reflections oc
along the path of Andreev resonance states@as shown in the
inset of Fig. 4~a!#.

~ii ! The current densityj 0(e) is dominated by a series o
peaks located precisely at the energies of Andreev reson
states. This is a clear indication that current is carried
Andreev resonance states. When min(VL2D,VR2D),e
,max(VL1D,VR1D), the peaks ofj 0(e) all have the same
height: this means each Andreev resonance state carrie
actly the same amount of current in the same flow directi
The reason for this peculiar behavior is simple. Along t
path of Andreev resonance states@inset of Fig. 4~a!#, all the
electrons move in one direction while all the holes move

FIG. 6. ~a! Time-averaged LDOS~dotted! and the time-averaged
distribution of electrons~solid! versuse; ~b! the time-averaged cur
rent density.ed520.15 and other parameters are the same as th
in Fig. 5.
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opposite direction, and along any one path the particle c
rent must be the same everywhere. Therefore, the And
resonance states carry the same amount of current in
same direction.

C. The current

The time-averaged currentI 0 of S-normal-S systems has
been extensively investigated both theoretically and exp
mentally. A main characteristic of theI -V curve I 0(V) is its
subharmonic gap structure atV52D/n,3–8,41 our results are
shown in Fig. 7. TheI -V curves also exhibit subharmoni
gap structure with a concomitant appearance of negative
ferential conductance. These results are in agreement
those reported recently by Yeyatiet al.6 and Johansson
et al.10 In the following, we focus on the ac component
the current.

From Eqs. ~13! and ~16!, we decompose the time
dependent current into its dissipative contributionI n

c , and
nondissipative contributionI n

s ,4

I L~ t !5I 01(
n

I Ln
c cosnvt1(

n
I Ln

s sinnvt, ~42!

where I Ln
c [Im(ILn1IL2n) and I Ln

s [Re(ILn2IL2n). Fig-
ure 8 and 9 show the first and second ac components ofI Ln

c

andI Ln
s as a function of the biasV, and they are marked by

strong oscillatory behavior. The period of oscillations
roughly given byV2/D, which is dependent on biasV. Gen-
erally, for 2D/m,eV,2D/(m11) (m51,2, . . . ), we
found that the ac components oscillate from a maximum t
minimum or vice versa. WhenV.2D/n, the components
I Ln

c and I Ln
s quickly decay to zero. WheneV;D/n, the am-

plitudes of the oscillations reach maximum. AteV→0, I Ln
c

decays to zero whileI Ln
s keeps a finite value. These beha

iors are different from those devices whose normal reg
has no electronic structure. For instance, the result
S-QPC-S system shows no oscillation.4

se

FIG. 7. Time-averaged currentI 0 versus biasV at differentG.
Other parameters:KBT50.1D, ed50, d50.005D, fL5fR50.
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The time-dependent currentI L(t) is shown in Fig. 10.
I L(t) is a well-known oscillatory function of the timet with
a frequencyv52 eV. When biasV is large, eV.D, the
high-order Fourier components have negligible contribut
and I L(t) can be approximated byI L(t)'I 01I L1sin(vt
1f). On the other hand, whenV is small, high-order com-
ponents contribute substantially andI L(t) deviates from a
simple sinelike curve.

FIG. 8. Dissipative ac componentsI L1
c and I L2

c versus biasV at
different G. Other parameters are the same as those of Fig. 7.

FIG. 9. Nondissipative ac componentsI L1
s andI L2

s versus biasV
at differentG. Other parameters are the same as those of Fig. 7
07531
n

IV. CONCLUSIONS

In this work, we have derived a general formula for
components of the time-dependent current of arbitrary ba
tic S-normal-S systems where the normal region has its o
electronic structure. The formula@Eq. ~17!# is valid even
when there is a strong interaction in the normal region of
hybrid device. We then applied this result to study ac Jose
son current for a system with the normal region being
noninteracting single-level quantum dot. The average in
dot distribution of electrons, the average intradot density
states, and ac components of the time-dependent curren
investigated in detail. The distribution exhibits an interesti
population inversion, a result that is qualitatively differe
from that of the diffusive normal region. A series of Andree
resonance states are formed at biasV,D in our system. The
peak heights of LDOS for these Andreev resonance states
not the same, but each state carries the same amount of
rent. The distribution of electrons at the Andreev resona
states are all the same, e.g., equals 1/2 for symmetric tu
barriers. In general, the ac components of the time-depen
current has an oscillatory behavior against the bias. Depe
ing on the value of bias, the high-order ac components m
or may not contribute to the total time-dependent curre
leading to a non-sinelike or a sinelike dependence on t
for the total current.

Finally, we comment on theeV→0 limit for the S-QD-S
system of this work. While our general current formula, E
~17!, is valid for any bias, how to correctly include importa
physical factors in an actual computation of the vario
quantities of Eq.~17!, needs to be discussed. When bias
very small,eV!D, an incident electron from below the ga
of the left superconducting lead undergoes many Andr
reflections in the QD so as to go above the gap of the ri
superconducting lead before exiting the QD. Therefore,
dwell timetp of the particle in the QD becomes long. At th
limit eV→0, tp tends to large values. Whentp is larger than
the mean inelastic scattering time, the intradot relaxation
fect should be considered in calculating the Green’s fu
tions involved in Eq.~17!. When there is no electronic struc
ture in the normal region of the device, for instance in

FIG. 10. Time-dependent currentI L(t) versus timet at different
biasV. GL5GR50.8D and other parameters are the same as th
of Fig. 7. The curves labelled 1–5 correspond toV52VR50.2D,
0.5D, 1.0D, 1.5D, and 3.0D, respectively.
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S-QPC-S system,4,5 the eV→0 limit has a variety of differ-
ent regimes depending on an inelastic scattering-rate pa
eterd and a transmission probability of the QPC.4,5 For our
S-QD-S system, while relaxation in the leads can simila
be included by introducing the same parameterd into the
Green’s function of the leads,4 this simple phenomenologica
approach cannot be applied in the normal QD region. Thi
because distribution of leads is determined by their chem
potential; however, the distribution in the QD must be calc
lated self-consistently for our system. Indeed, if one int
duces a finited in the QD Green’s function, current conse
vation will be violated. A proper treatment of this problem
perhaps, to explicitly introduce an electron-phonon inter
-
o

ys
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hy

t,
.

ev
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tion term in the Hamiltonian. This is a very complicate
problem to solve and we hope to be able to report such
analysis in the future.
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