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The ac Josephson effect in hybrid systems of a normal mesoscopic conductor coupled to two superconduct-
ing (9 leads is investigated theoretically. A general formula of the ac components of time-dependent current is
derived, which is valid for arbitrary interactions in the normal region. We apply this formula to analyze a
SnormalS system where the normal region is a noninteracting single-level quantum dot. We report the
physical behavior of time-averaged nonequilibrium distribution of electrons in the quantum dot, the formation
of Andreev resonance states, and ac components of the time-dependent current. The distribution is found to
exhibit a population inversion; and all Andreev resonance states between the superconductingpggpthe
same amount of the current and in the same flow direction. The ac components of time-dependent current show
strong oscillatory behavior in marked contrast to the subharmonic gap structure of the average current.
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[. INTRODUCTION fore, it is an important task to theoretically understand the
time-dependent current in addition to understanding its time
Quantum-transport properties of mesoscopic conductoraverage. So far there have been some literatures that report
coupled to two superconductin@) leads have been exten- time-dependent current forSnormalS devicest>19-22
sively investigated in the last decade both theoretically andror example, Cuevast al. have investigated the ac compo-
experimentally:? The mesoscopic conductor in question is nent of the time-dependent current foSaQPC-S systent*
usually not a superconductor itself, but it can be a quantunBratuset al® have investigated the time-dependent current
point contact(QPQ,* a quantum dotQD),°® a tunnel in a Squantum-constrictiors system by considering an ar-
barrier, a normal metaf:** and even a molecule, such as apjtrary normal electron transparency and discussed the prop-
nanotubé?~**The physics of these hybrid device structures,erty of the current at the small bias limit; Huet al. have
in the form ofS-normalS, has profound implications to both gt died the ac Josephson current in a device in which the
fundamental understanding of the quantum transport at a rgyo superconducting leads have different superconducting
duced dimensionality and to practical applications in Nanoyans?22 Recently, some efforts have also been devoted to

electroni(;s.h , A tics & g the study of time-dependent current irdaave supercon-
One of the main transport characteristics daormal: ducting systen?>?* However, in these previous works, the

device structure is that partlcles_ in the normal region ca ormal region of thes-normalS device was simplified to a
undergo multiple Andreev reflections by the two supercon ingle barrier or a single impurity, and electron-electron in-
ducting leads. If the normal region is ballistic, a consequenc? 9 9 purity,

of the coherent superposition of these multiple Andreev re_eragtlop n tlhe dnormalbregllon hlas beerll r(;etglet?]tedb.a;ge super-
flections is the formation of Andreev bound statég The ~ COnducting iead may be closely coupied 1o the ar

Andreev bound states are important because they carry cufith & certain distanc€.**The barrier has been described by
rent including the supercurrent. On the other hand, if the? SImple constant transmission coefficient independent of en-
normal region is diffusive, a so-called supercurrent-carryingf'9y € Given the interesting physics already discovered by
density of states, instead of the Andreev bound states, givégese previous investigations, it is indeed not difficult to ex-
the ability for carrying supercurreff.The multiple Andreev ~ Pect that even richer physics would arise if the normal region
reflection is also known to generate subharmonic gap strud¥as its own electronic structure and/or electron-electron in-
ture in the behavior of ;=1,(V), wherel, is the average teractions.
current andV is the bias voltagé=®° More recently, the It is the purpose of this work to further investigate the ac
subharmonic gap structure is used to measure transmissidosephson effect i-normalS device systems, and we focus
probability of each channel in a multichannel QPCon issues not resolved by the previous analysis. In particular,
device!’8 we consider a mesoscop&normalS device with an arbi-
Another important and interesting transport characteristi¢rary normal region that may have its own electronic struc-
of SnormalS devices is the Josephson effect that gives riseéure and/or strong electron-electron interactions: for this gen-
to a dc supercurrent at zero bias, and an ac current at nonzegoal situation we have derived the expression of the ac
bias. Previous theoretical analyses have focused on the dtirrent. As an application we then investigate a specific case
Josephson effect at zero bfagnd the subharmonic gap in which the normal region is a ballistic quantum dpe., a
structure of theaverage current at a nonzero bids®'®  double-barriers structuydaving a noninteracting single en-
However, the ac Josephson effect, which arises at a nonzeesgy level, for which we investigate the intradot nonequilib-
bias, produces a current that is a function of tim@here-  rium distribution of electrons, the local density of state
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(LDOS), and the time-dependent current. Our main findings:j’r(, (cj,) are the creation(annihilation) operators of an
are as follows. electron in statejo of the normal region.H;,; models

(i) The intradot electronic distribution shows a populationinteractions in the normal region whose form depends on
inversion property. This property is distinctly and qualita- specific physics problems under consideration. In this sec-
tively different from that of the case where the normal regiontion we consider the general case without specifying its
is diffusive. concrete form. In deriving the formula for the transport

(if) At small bias voltages such thatv<<A, whereA is  current, we permit the device-normakentra) region to have
the superconducting gap, a series of Andreev resonancgrious interactions, such as the electron-electron Coulomb

states is found to emerge within the gap. Their weights argnteraction, 21’U;j1’01(1.ﬁjlal)ujg;jlalc}“acjgcj’f o,Ciyop; the
not the same but they carry equal amount of current in th%lectron-phonon interaction. . M..c! Cl l(dT+d )
same direction, as well, their electronic distributions are all Fq T hoa g oo g T q
1/2 +24fiwqdgdy; the tunneling coupling between different

. . T .

(iii) The ac current component versus blashows an  States of the normal regiol; ; (- j)(t;; ¢;,Cj, + H.C.); and
oscillatory behavior. The amplitude of oscillation of then ~ S On-Hr of Eq. (1) denotes the tunneling Hamiltonian be-
component is largest at abomt=A/n. At small bias, the tween the superconducting leads and the normal region of
high-order components quickly increase, and the timelh€ device, and,; is the hopping matrix. In order to obtain
dependent current versus tinedeviates from a sinelike the Hamiltonian(1), we have performed a unitary transfor-
curve mation, then the superconducting initial phagg and the

: ; ; . 25,26

The rest of the paper is organized as follows. In Sec. I1{€rminal voltageV,, emerge in the Hamiltoniakiy .
the model Hamiltonian is presented and a general formula 'Ne total current of superconducting leade.g.,a=L)
for the ac current component is derived. In Sec. Ill, ac Joflowing into the device-normal region can be calculated from
sephson effect for a simp@normalS device with a nonin- evolution of the total number operator of electrons in that

. . .. . . — T -28 (; H
teracting normal region is investigated. The intradot elecl€@d, NL =2 ;8 y,8.k,. Then we havé®~?® (in units of
tronic distributions, the Andreev resonance states, and a#=1)
current components are presented in this section. Finally, a ) )
brief summary is given in Sec. IV. IL(t)=—e(NL(t))=ie([N_,H])

Il. MODEL AND FORMULATION =2eRe, Tr{G (t,)t (1)}, (5)
k,i ’

We assume th&normals device system to be described

by the following Hamiltoniarf>2 where

H= S H.+H H @ <aEkT(t1)CiT(t)> (aL - (tcip (1)
= a+ + 1 € < = i
@=L,R cen T Gitt) =i (af i (t)ef (D) (A (t)ef (1)
where ) o o
is the distribution Green’s function in thex2 Nambu rep-
2 + resentation, and, is the Pauli matrix. In this paper, we use
Ha= “ €ak@akoAako the notation that A” means quantityA to be a 2<2 matrix.
To proceed we need to solve the Green’s function
(2) éka(t,t). We assume that the leads do not have any inter-
actions except the quadratic pair potential correlation, we
have®28

T T
+ Zk [Aaaakiaafk]‘ + AaaafkTaaki]'

Hoer= 2, €6],Cjot Hind{ef, 1 {Ci0t ), (3) . NN
he Gi,Lk(tvt):zj: jdtl[Gij(tatl)tLj(tl)ng(tlat)

+2eVa
bot——t

i
Hi= >, tajexp{z

K,j,o,a

al,CiotHe (4 + G5 ()T ()R, D], (6)

H, (a=L,R) describes the leftright BCS superconductingWhere 5(ty,t) is the ‘exact Green's function of the left
lead with the superconducting energy gdp,. Hge, is  superconducting Iea‘bﬁStLj(t) in Egs.(5) and(6) is a 2x2
the Hamiltonian of the normal region of the device, andhopping matrix defined by

tLjeXF{i ¢

L
7+9V|_t)} 0

t(t)= s : @)
0 —tfjex;{—i(%wLeVLt }
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(t t;) and G ;(t,ty) are the retarded and distribution _ jt JE e(t—ty) Ty [
Green's functions in the device normal region. They are de- WD==2eim | dty | 57e THpL(e)fLle)

fined by A A .
. . XG'(t,ty) + BL ()G (t,t) [T 2 65}, (10
Gij(tty)=—16(t—ty) wheref | r(€)=1/(e¥¥87+ 1) is the Fermi distribution func-
tion of electrons in the left/right superconducting legd(e)
<<{C'T(t)’c”(t1)}> (e, C”(tl)}>) is defined a&2° B, (e)=el(iyAZ—&?) for A >|e|, and
(el el el (vt} BL(e)=|el/(Ve?=A?) for A <|el. P(e)=Rep(e)]

(8) =0(|e|—A)| €|/ /(€= A?) is the dimensionless BCS den-
sity of states, i.e., the ratio of the superconducting density of
<CjTT(t1)CiT(t)> (c; (t)cip (1) stateSpf(e) to the normal density of statep{‘(e) I' is the
A —i linewidth matrix function defined by’ ;i =2t t}"; pL(e)
i (bt I( (el (tyef (1) <Cj1(t1)CiT¢(t)>) ® in which we have assumed tHEt is mde;aendent eJnergn;/3
In this paper, we use boldface letters to denote quantities
SubstltutmgG " (t,1) into Eq. (5), assuming, ; is real, the representing matrices whose matrix elements are calculated

currentl (t) can be expressed in terms of the Green’s func-using states,j of the device-normal region. FlnalliL is a
tions of the device normal region, as compact notation,

exd —ieV (t;—1)] —%ex;{—igbL—ieVL(tlth)]
Si(e)= A . (11
- ?exr{icz),_+iev,_(t1+t)] exgieV (t;—1)]

The formula(10) describes the current using Green'’s func-and take the double Fourier expansion for the Green's
tions of the normal region. It is a general formula and canfunctiorf+>°
therefore, be applied to situations involving arbitrary interac-

tions in the normal region and is also applicable at nonequi- . inot. [ d€ Cie(t-ty)

librium (e.g., at a high bias/). If the normal region is G(t’tl)_; e 258 HGn(€). (14
coupled to multiple superconducting leads or to some extra o _ _ _

normal leads, Eq(10) is still valid. To simplify notation in the following analysis, we introduce

In the following we fixV, =0,%! so that the left supercon- duantitiesGy(€)=Gn_m(e+me) andZ(t),
ducting lead is taken as the potential ground, themeduces

t de .
to 7,.(t)= —2ef dtlf ﬁe'f(‘_‘l)Tr{[ﬁ,_(e)f,_(e)G’(t,tl)
A A & .
1 ——e i +BL (e)G (1,1 X 65}, (19
= €
2 (e)= A : (120 so thatl, (t)=Im[Z,(t)].
_—edd 1 Then the Fourier component of ac current is obtained as
€
i
Note that the superconducting phase difference between the ILnZE(It,—n_ILn)v (16)

two leads is a time-dependent periodic function with a period
T=27/w, wherew=2 eV andV=V, — Vg is the bias volt- and
age between the leads. Therefore, the time-dependent current

[ (1) is also a periodic function with the same peridénd _ —ZeJ ETrl
the Green's functions have the property(t,t;)=G(t 2
+T,t;+7T).32 Then we can take the conventional Fourier
expansion for the current (t)

fL(e)PL(e)G  o(e)

1 . =
+ Eﬁf(e)csfno(e) FLEL&Z]. (17

2 I enet, (13) Equations(16) and (17) are the first central results of this
work. They describe ac components of the time-dependent
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current of aS-normalS device system in terms of the Fourier Green's functionsG', (¢) and G, (€) using the Dyson

component of the Green's functig®o(¢) andG= () of  equation and the Keldysh equatio =g +G'S'g, and
the normal region. These formulas, E¢E3), (16), and(17), G<=6"$<G2. Hered is the exact Green's function for the

are valid for arbitrgry inter{;\ctiqns the normal region MaY jevice-normal region without coupling to the leads, and it
have, for nonequilibrium situations, and for devices Wlthcan be easily derived as

other normal leads. They cannot, however, be applied to de-

vices with more than two superconducting leads. g (t,t)=—i6(t—ty)
When bias voltag®/ is zero the current (t) is indepen- .
dent to timet, then the current reduces as » exd —iHcem(t—t1)] O

fL(e)pL(e)C (€) (20)

I, =—2el JdeT
L= —<€1m EI’

1 . 3" and3 < are the retarded and distribution self-energies due
+5BL(e)G(e)

FLiL‘}z]- (18 to coupling to the leads, withS (9)(t,t;)=321()(t,t,)
+315)(t,t,) and

III. NONINTERACTING NORMAL REGION

. . . SR (L) =2 T i8Rkt t) LRy (t
In this section we apply the general expressions for the ac L. (bt 2k: LRI DR R (t)

current derived above to an example os-aormalS device
where the normal region has no electron-electron interac- — it )J' EF Bl (€)
tions. For this situation, the Hamiltoniat,, can be written V) 27 LRUPLER)

as ) s
Xe_'e(t_tl)EL(R) , (21

Hcenzz 6jU'C]T(era'+_ ) z ) (tijCiTUCjo'+ HC) R R R

a Het=D EE(R),ij(t-tl):; i (DA RK(E ) TRy (t1)

EE Hcen,o- (19 de

_ . U_ _ _ _ . :ifEFL(R),ijfL(R)(E)T)L(R)(E)

This Hamiltonian describes a multilevel noninteracting quan-

tum dot for whicht;; =0. It also can describe a typical tight- Xe*if(t*tl)i 22)

binding lattice model, in whiclt;; #0, the second term in L(R) -

Eq. (19) denotes the coupling between different lattice sitesThe Fourier spaces form of these quantities are easily ob-
For the specificH ., of Eq. (19), we can solve the tained(notice thatV_ =0 andVgr=—V)

Smn! (ém—Hcen +i07) 0

Omn(€) = . , 23
Omn( €)= o Sl (€m+Heon +107) @3
or i 2
L;mn(e): - EFL5mn:8L(6m)2L(Em): (29
~Ar
i 5mnBR(Em+(1/2)) 5m,n—1ﬁR(5m+(1/2)) E +(:L/Z)e PR
e m
rR;mn(E): - EFR “Ar , (25
Omn+1Br(€m—(1/2) PRI e’ SnnBr(€m-(1/2)
me

S € =T SmnfL(em)PL(em)SL(€m), (26)

Surf e - AR e

mn L(6m+(1/2))pR(€m+(1/2)) 5m,n—1fL(€m+(1/2))PR(6m+(1/2)) ems (112 e R

ol . m
;;mn(E)ZIFR _AR ) !
5m,n+1fL(fm—(llz))T?R(fm—u/z)) 12 e'’r 5mnfR(€mf(1/2))7)R(€m7(1/2))
me

27

075315-4



HAMILTONIAN APPROACH TO THE AC JOSEPHSON . .. PHYSICAL REVIEW B5 075315

wheree,= e+ Xw. Similarly, the Fourier spaces form of the (a) - i b) § . ()
Keldysh equation and the Dyson equation are ] L T | ch I
A A A A v—I flm o VVL ,,,,,,, 1IN o y
G €)= 2 Gl (37, (GTn(e), (28) ‘ g g
1:'2
~ . ~ ~ R B B B,.-
G%n(e):grr‘nn(f)‘smn"_zl G:’nl(f) Irn(f)gnn(e)- (29 ” b o

FIG. 1. A schematic diagram for the transport process consisting
If é:nn(e) has been solved, then from the Keldysh equatiorpf two Andreev reflections(a). The particle is first Andreev re-

A< . : flected by the left superconducting lead, then by the right supercon-
f?ﬁeﬁgﬁg).ncan geor?lbtil(?:g tit?(;?rgf?r:\év?gg' dlgeé?;c;rﬁ,’sducting lead. This is described by the quantiy;(€). After this
: wing w y v process, the particle energy reduces by 2 (e¥., =2 eV). (b).

function Gp,(e). The particle is first Andreev reflected by the Iéfight) lead, fol-
From the Dyson equatio(29) we have lowed by another reflection at the same lead. This process is de-
; ; , ; ; scribed by quantityByo(€). After this process, the particle energy
Gmn;ll: Omn110mnTt Gmn;llznn;llgnn;ll does not changéc). The patrticle is first Andreev reflected by the
right lead, then by the left lead. It is described by quarBigy ;(e).
+ 2| G{nl;lZE{n;ZlgLn;ll’ (30) After this process, the particle energy rises 2 eV. All processes with

an even number Andreev reflections can be decomposed to the three
processes plotted here. All processes with an odd number of An-
dreev reflections can be decomposed to the even case plus one more

Grrnn;lzz Grr11n;122:1n;229rr1n;22+2| Grrnl;llzlrn;lzgrrm;Zzi reflection.
31
31 Similarly, the quantityY ,,,(¢) has a clear physical meaning:
where we have suppressed the argumerffrom Eq.(31), it gives the intensity of the process for which an electron
one has having initial energye+nw ends up with final energy
1 +me after going through all possible multiple Andreev re-
flections in the normal region. Equatiq86) can only be
G:nn;lZZEI G:nl;llzlrn;lz 1 r - (32 9 quatia§e) y

solved numerically and after ,, is solved, from Eqs(35)

and (32) G,,1; and Gy, .1, can be obtained immediately.
Finally, Gy,2; and Gy, .5, can also be calculated using the
following equations, which are derived from the Dyson

hn;22~ “nn;22

In here,g ! is (g') "!. Substituting this expression to Eq.
(30) one easily finds

P equation:
mn
G%n:llz—gr,éz_zr 22+E| Gri:11Bin » (33 1
nn; nn;
:nn;Zl:E -1 wr 2rm|;21GIrn;ll’ (37)
where I gmm22_ mm; 22
1 1 Smn 1
an(E)EE E:nl;lz —1 r |rn;21 1 r . :nn;22: —1 r 1 r 2:71I;ZlG{n;12'
! I1:227 211;22 Onn;11~ 2nn;11 Omm22~ 2mm22 | Imm22~ Zmm22
(34) (39

NoteBp,#0 only whenm=n,n+ 1. The quantiyBn,hasa  with &' and G, solved, from Eq(17) the ac component

clear physical meaning: it describes the intensity of Andreey,,q time-dependent current can be calculated without further
reflection processes, an example is shown in Fig. 1 in Wh'd&omplications.

a particle in the normal region underrgoes twice Andreev re- |, the rest of this section, we present numerical results
flections. Then by iterating Eq33), G,,1, can be formally  for which some further simplifications are made. We reduce

solved, the device-normal region to a quantum dot with a spin-
degenerate single level, i.ei,cen=EgechcU. For this case
G .= Smn 1 v (35) the boldface matrices reduce toCanumber. We also take
mn11™ 1 r mns

A=A, =Ar=1 as the energy unit and only consider devices

-1
11 it Ommit— mmit ) : : ;
with symmetric barriersI{, =I'g). It should be mentioned

where that since we have assumed a spin-independent intradot
level €4 and hopping elements g , <c}r(t1)cT(t)) should be
Y mn= an+|2 Bm|1B|ln+|2I Brmi,Bi,Bint equal to(c|(ty)c(t)). Following this we haveGy(t,t;)
1 1:'2

+GZ<2£tl't):_[Grll(titl)_Gil(Ltl)] and  G=(t,ty)
=—[G~(t;,t)]".* The Fourier forms areGy,1(€)

=Byt > BmiYin . (36) A\
mea e +G=, _mad —€)=—[Ghn11(€) = Ghr1a(€)] and G (e)
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trons at different bias voltag¥ for our system with a very
large couplingl. WhenT is large, coupling between the
superconducting leads and the normal region is strong, there-
fore the device behaves in a manner similar t&-lzallistic-
normal-conductof system. The property of the electron dis-
tribution in this situation is the following. When mix(
—AVg—A)<e<max(V_ +A,Vig+A), the distribution is a
constant, i.e.fy(e)~1/2 for symmetric couplings. Whea
goes away from this region, the distribution quickly rises
drops to unity (or to zerg for e<min(V, —A,Vg—A) [or for
e>max(V +AVgt+A)].

To contrast with the experimental results of Piestel >
and the theoretical results of Bezughti al.” here the dis-
tribution is a constant instead of the multiple-step structure
FIG. 2. Time-averaged intradot distribution of electrons versusbetween t'he gap, even tho.ugh' multiple Andreev reflections
energye at largel’, I, =I'y=100Q\. Temperaturek ;7=0.05A, d_o occur in our system. This dlffere_nce or!gma_tes from the
€,=0, 5=0 (5 is the inelastic scattering rate in two supercon- différent property of the central device region, i.e., our nor-
ducting leads and ¢, = ¢x=0. Note the fact that the time- Mal region is ballistic while that in Pierret al. experiment it
averaged distribution, LDOS, and the ac components of the currerig diffusive™ In order to explain it in more detail, the inset
are all independent with initial values @f, and ¢ at 5=0. Inset: ~ Of Fig. 2 shows a particular multipléwo) Andreev reflec-
schematic diagram showing a multiplevo) Andreev reflection  tion process. To start, an incident electronfatbelow the
process. gap of the left lead tunnels into the QD, it passes two An-
dreev reflectionsthrough the points labeled #sl —A6) in-

=—[é§n(e)]'f. These relationships provide very strong side the QD and finally tunnels into the right leéat A.)

checks on our analytical derivations and numerical calculahich is higher than the gap of the right lead. Due to the
tions which we present in the following sections. ballistic nature of the QD, the distribution of electrons at

pointAl is the same as &t2, the distribution of holes a3
is the same as &4, while distribution of electrons &5 is
the same as a6. WhenI is large, the probability of An-

In this section we present results of the intradot distribudreev reflection inside the QD within the energy gap is very
tion of electrons for theSnormalS device. Owing to the close to unity’® and hence the hole distribution A8 is, to a
finite bias voltage/, the current, intradot occupation number very good extent, the same as the distribution of electrons at
of electrons, LDOS, and the intradot distribution of elec-A2. Similarly the hole distribution af4 is approximately
trons, are all functions of the timte The time-average occu- the same as the electron distributionZ&. We hence con-
pation number of electrons on the intradot states (same  clude that for the ballistic normal region, the distribution of
for state]) particles (electrons and holgsalong this path is the same

de everywhere, except at the abrupt change during the tunneling
_ i< _ i 2 a< process a#\; and A, from and to the two leads. Moreover,
(M (O)=~1{Gu(t.): If 27 Cooai ) (39 for symmetric barriers, the distribution of particles along the
A1-A6 path must be 1/2. This explains why we obtained a
constant 1/2 distribution at mi(—A,Vg—A)<e<max(V_
+A,Vg+A) as shown in Fig. 2. This also explains why we
expect a different distribution when the normal region is

distribution function f;

energy € (A)

A. Intradot distribution of electrons

The integrand of Eq(39), (—i/2m)Ggy.14(€), is the time-
averaged occupation number of electrons with enetgy
Here, subscript “11” are indexes of thex2 Nambu matrix
element, and 00, are indexes of Fourier COmF’?”e”‘- Thegittusive: for a diffusive conductor the distribution &t
avetage LDOS is given bp(e): _(:L_/”),Im[,GOO:ll(E) andA2 must be different due to diffusive scattering between
+Goo,2d —€)]. The average intradot distribution of elec- {he two points, therefore the distribution of particles
trons can be obtained from the average occupation number gfij| continuously vary from one to zero along the path

energye and the averagB(e),% A1—A6.
L Next, we investigate the distribution of electrons for
f0) iGgo;11(€) 40 I'~A, the results are shown in Fig. 3. For this case, a most
d

prominent behavior of 4(€) is that it oscillates as a function
of the e. The oscillations also become more rapid when bias
It is important to emphasize that the distribution of electronsvoltageV is reduced. An oscillator§y(e) means its value is
can be experimentally measur&d® For example, recently not necessarily smaller for larger hence a “population in-
Pierreet al. have measuréfithis distribution for aS-normal-  version” is possible. This population inversion originates
S device where the normal region is a diffusive mesoscopidrom the nonmonotonic probability of Andreev reflections.
metallic wire. They reported a multiple-step structure for theFor examplef4(€) has a dip at=Vg—A, due to the fol-
distribution of electrons in that devicé. lowing reason. For an incident electron coming from the left
Figure 2 shows the average intradot distribution of elecdead with energy/g— A, this electron has a small but non-

T 2Im[Gho1d€)]’
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FIG. 3. Time-averaged intradot distribution of electrons versus o 80 7 ,
energye at general QD parameters;, =I'r=1.5A. Other param- 8 ]
eters are the same as those of Fig. 2. - 40 L l J
zero probability to pass the left barrier. After tunneling 0 J ‘ A
through, it reaches the right barrier where an Andreev reflec- -1 -05 0 0.5 1
tion occurs. Because this electron has energyWg—A, the energy & (4)
Andreev reflection occurs with probability oA€This means FIG. 4. Time-averaged LDOS versus at different biasV.

that the electron with energyg— A is difficult to tunnel into Kg7=0.1A, I' =[r=0.8), e,=0, and5=0. The downward ar-

the QD, but it is easy to leave the QD after tunneling into it.,y in (b) points to an Andreev resonance state with a very small

Therefore, the distribution of electrons at this eneegys  pos. Inset in(a): schematic diagram showing a multiple Andreev

very small. Where deviates fromiVg—A, the probability of  reflection that passes through the Andreev resonance states indi-

Andreev reflection decreases leading to a lafygr hence  cated by the thick solid lines in the QD.

we expect a dip irfy to emerge ag=Vy—A.

particle goes through all Andreev resonance states, and a

resonance multiple Andreev reflection occurs. Occasionally,

a quenching of Andreev resonance state is observed to occur.
In this section, we investigate another important quantityin this case, a specific Andreev resonance state may have

the average LDOS. We will mainly discusses Andreev resovery low LDOS at a specific bia¢, an example is indicated

nance states at a finite bia&>*° If bias V>2A, multiple by the arrow in Fig. &).

Andreev reflections are very weak hence no Andreev reso- The results of Fig. 4 is obtained by fixing the intradot

nance states can form in the QD. In this case the intraddevel ¢4 to zero (i.e., at the center of the gapNext, we

level e is only slightly shifted due to a nonzero real part of investigate how Andreev resonance states are affected when

the self-energy.’, the level half-width is still on the scale of ¢,+0, the results are shown in Fig. 5. Wigg#0, the An-

I' g, and extra structure@ dip and a pegkemerge in the dreev resonance states are shifted in their positions, but their

curves of D(e€) versuse at the superconducting gamot  physical characteristics are the same as thoseof0. The

shown in herg amount of shift is notey but much smaller and two succes-
Much more interesting is the casef A, shown in Fig.  sive Andreev resonance states are shifted in opposite direc-

4 at different bias/. A series of very narrow peaks emerge in tions. If an Andreev resonance state is in the energy range

D(e€), clearly indicating the formation of Andreev resonance

states inside the QD. Note that they are not rigorous bound I B e B

states but are quasibound states with a finite lifetime, and 50 * -— -—

after many Andreev reflections the particle can leave the QD. r

B. Local density of states

The half-width of Andreev resonance states is much nar- < 40 3 ]
rower thanl”. With a decreasing bia¥, they become even =30 [ 3
narrower with a higher intensity. The average distance be- © ; — ]
tween two successive Andreev resonance states is ahbut g 20 ¢ ]
WhenneV and ((+1)eV (n=0,21,£2, ...) arewithin 10 [ ]

the gap, there exists an Andreev resonance state between
=neV and (h+1)eV. Moreover, these Andreev resonance
states are symmetrically distributed at the two sided/of
andVy. This means the following: when an incident elec-
tron from below the gap aligns perfectly with an Andreev  FIG. 5. Time-averaged LDOS versesat different level posi-
resonance state of the QD, even after many Andreev reflegionse,. Vg=—0.3A and other parameters are the same as those of
tions it will always stay on the Andreev resonance state untiFig. 4. Different curves correspond t=0.15A, 0A, —0.1R,

it leaves the QOsee inset of Fig. @)]. Along this path, the —0.3Q\, and —0.4%, along the arrow direction.

-1 —05 0 05 1
energy £ (A)
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energy € (A)
_ ) opposite direction, and along any one path the particle cur-
FIG. 6. (a) Time-averaged LDO®otted and the time-averaged rent must be the same everywhere. Therefore, the Andreev

distribution of electrongsolid) versuse; (b) the time-averaged cur- resonance states carry the same amount of current in the
rent densityeq= —0.15 and other parameters are the same as thos§ame direction

in Fig. 5.

from e=neVto (n+1)eV, it stays in this range at any value C. The current
of 4. Their heights vary witkeyq, whenegy is in the range of
neVto (n+1)eV, the peak in this range reaches a maximum
value.

An important property of the Andreev resonance states i
their ability to carry current. From Eq$16) and (17), the
time-averaged current density(€) is obtained to be

The time-averaged curreihg of SsnormalS systems has
been extensively investigated both theoretically and experi-
énentally. A main characteristic of tHeV curvely(V) is its
Subharmonic gap structure ¥t=2A/n,3> %4 our results are
shown in Fig. 7. Thd-V curves also exhibit subharmonic
gap structure with a concomitant appearance of negative dif-
. ferential conductance. These results are in agreement with
fL(e)pL(€)Gpyl€) those reported recently by Yeyaétal® and Johansson

et all? In the following, we focus on the ac component of

R the current.

FLEL&Z]. (41 From Egs. (13) and (16), we decompose the time-
dependent current into its dissipative contributidn and

The current density is related to time-averaged current asondissipative contributiot? ,*

lo=/dejo(€). In Fig. 6, we show intradot distribution of

electronsf 4 [solid curve in Fig. 6a)], LDOS[dotted curve in

Fig. 6(@)], and the time-averaged current den$iyg. 6(b)] _ c s o

jo(€). Several observations are in order. (1) I°+; 'tn cosan—; 't sinnot, (42

(i) Although fy(e€) is oscillating between 0 and 1 in a
complicated manner, its value at each Andreev resonance c s .
state(the peak positions of the dotted cuyvis always 1/2. where I, =Im(Zn+ 7, —p) andl(,=Re{n—~1, ). Fig-
This is because resonant multiple Andreev reflections occuf™® 85and 9 show the first and second ac component,of
along the path of Andreev resonance st@gasshown in the andl(, as a function of the biag, and they are marked by a
inset of Fig. 4a)]. strong osgllatory behavpr. The period of os.C|IIat|ons is

(i) The current density,(€) is dominated by a series of roughly given byv?/A, which is dependent on bias Gen-
peaks located precisely at the energies of Andreev resonangéally, for 2A/m<eV<2A/(m+1) (m=1.2,...), we
states. This is a clear indication that current is carried byound that the ac components oscillate from a maximum to a
Andreev resonance states. When mMjnr{AVg—A)<e  Minimum or vice versa. WheW>2A/n, the components
<max(V_+A,Vg+A), the peaks ofo(€) all have the same | @andI{, quickly decay to zero. WheaV~A/n, the am-
height: this means each Andreev resonance state carries eMitudes of the oscillations reach maximum. &v—0, If,
actly the same amount of current in the same flow directiondecays to zero whilé} | keeps a finite value. These behav-
The reason for this peculiar behavior is simple. Along theiors are different from those devices whose normal region
path of Andreev resonance stafésset of Fig. 4a)], all the  has no electronic structure. For instance, the result of
electrons move in one direction while all the holes move inS-QPC-S system shows no oscillatidh.

_ e
jole)=— ;Im Tr[

1 .
+5BL ()Gl e)
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The time-dependent curremf(t) is shown in Fig. 10.
[ (t) is a well-known oscillatory function of the timewith
a frequencyw=2 eV. When biasV is large,eV>A, the

—— TI=T,=0.8A i
----------- FL=FR=1 BA B

1 15 2 25 3

bias eV (A)

PHYSICAL REVIEW B5 075315
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FIG. 10. Time-dependent curreht(t) versus time at different
biasV. I' =I'r=0.8A and other parameters are the same as those
of Fig. 7. The curves labelled 1-5 correspondvte —Vg=0.2A,
0.5A, 1.QA, 1.5A, and 3.Q\, respectively.

IV. CONCLUSIONS

In this work, we have derived a general formula for ac
components of the time-dependent current of arbitrary ballis-
tic SnormalS systems where the normal region has its own
electronic structure. The formulgEq. (17)] is valid even
when there is a strong interaction in the normal region of the
hybrid device. We then applied this result to study ac Joseph-
son current for a system with the normal region being a
noninteracting single-level quantum dot. The average intra-

high-order Fourier components have negligible contributiordot distribution of electrons, the average intradot density of

and I (t) can be approximated by (t)~Iy+1 (Sin(wt
+¢). On the other hand, whevi is small, high-order com-
ponents contribute substantially ahg(t) deviates from a
simple sinelike curve.

0.05

FIG. 9. Nondissipative ac componenfs andl}, versus bias/

1 1.5 2 25 3

bias eV (A)

states, and ac components of the time-dependent current are
investigated in detail. The distribution exhibits an interesting
population inversion, a result that is qualitatively different
from that of the diffusive normal region. A series of Andreev
resonance states are formed at BiasA in our system. The
peak heights of LDOS for these Andreev resonance states are
not the same, but each state carries the same amount of cur-
rent. The distribution of electrons at the Andreev resonance
states are all the same, e.g., equals 1/2 for symmetric tunnel
barriers. In general, the ac components of the time-dependent
current has an oscillatory behavior against the bias. Depend-
ing on the value of bias, the high-order ac components may
or may not contribute to the total time-dependent current,
leading to a non-sinelike or a sinelike dependence on time
for the total current.

Finally, we comment on theV— 0 limit for the S-QD-S
system of this work. While our general current formula, Eq.
(17), is valid for any bias, how to correctly include important
physical factors in an actual computation of the various
guantities of Eq(17), needs to be discussed. When bias is
very small,eV<A, an incident electron from below the gap
of the left superconducting lead undergoes many Andreev
reflections in the QD so as to go above the gap of the right
superconducting lead before exiting the QD. Therefore, the
dwell time 7, of the particle in the QD becomes long. At the
limit eV—0, 7, tends to large values. Whepy is larger than
the mean inelastic scattering time, the intradot relaxation ef-
fect should be considered in calculating the Green’s func-
tions involved in Eq(17). When there is no electronic struc-

at differentl’. Other parameters are the same as those of Fig. 7. ture in the normal region of the device, for instance in a
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S-QPC-S systent*® the eV—0 limit has a variety of differ- tion term in the Hamiltonian. This is a very complicated
ent regimes depending on an inelastic scattering-rate pararproblem to solve and we hope to be able to report such an
eter § and a transmission probability of the QBEFor our  analysis in the future.

S-QD-S system, while relaxation in the leads can similarly

be included by introducing the same paramefeinto the

Green’s function of the leadsthis simple phenomenological ACKNOWLEDGMENTS

approach cannot be applied in the normal QD region. This is ] .
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