1,065 research outputs found

    Proposal for an Experiment to Test a Theory of High Temperature Superconductors

    Full text link
    A theory for the phenomena observed in Copper-Oxide based high temperature superconducting materials derives an elusive time-reversal and rotational symmetry breaking order parameter for the observed pseudogap phase ending at a quantum-critical point near the composition for the highest TcT_c. An experiment is proposed to observe such a symmetry breaking. It is shown that Angle-resolved Photoemission yields a current density which is different for left and right circularly polarized photons. The magnitude of the effect and its momentum dependence is estimated. Barring the presence of domains of the predicted phase an asymmetry of about 0.1 is predicted at low temperatures in moderately underdoped samples.Comment: latex, 2 figure

    Pseudogap and photoemission spectra in the attractive Hubbard model

    Full text link
    Angle-resolved photoemission spectra are calculated microscopically for the two-dimensional attractive Hubbard model. A system of self-consistent T-matrix equations are solved numerically in the real-time domain. The single-particle spectral function has a two-peak structure resulting from the presense of bound states. The spectral function is suppressed at the chemical potential, leading to a pseudogap-like behavior. At high temperatures and densities the pseudogap diminishes and finally disappears; these findings are similar to experimental observations for the cuprates.Comment: 5 pages, 4 figures, published versio

    Aging-related inflammation in osteoarthritis

    Get PDF
    It is well accepted that aging is an important contributing factor to the development of osteoarthritis (OA). The mechanisms responsible appear to be multifactorial and may include an age-related pro-inflammatory state that has been termed “inflamm-aging.” Age-related inflammation can be both systemic and local. Systemic inflammation can be promoted by aging changes in adipose tissue that result in increased production of cytokines such as interleukin (IL)-6 and TNFα. Numerous studies have shown an age-related increase in blood levels of IL-6 that has been associated with decreased physical function and frailty. Importantly, higher levels of IL-6 have been associated with an increased risk of knee OA progression. However, knockout of IL-6 in male mice resulted in worse age-related OA rather than less OA. Joint tissue cells, including chondrocytes and meniscal cells, as well as the neighboring infrapatellar fat in the knee joint, can be a local source of inflammatory mediators that increase with age and contribute to OA. An increased production of pro-inflammatory mediators that include cytokines and chemokines, as well as matrix degrading enzymes important in joint tissue destruction, can be the result of cell senescence and the development of the senescence-associated secretory phenotype. Further studies are needed to better understand the basis for inflamm-aging and its role in OA with the hope that this work will lead to new interventions targeting inflammation to reduce not only joint tissue destruction but also pain and disability in older adults with OA

    Function of the chondrocyte PI-3 kinase-Akt signaling pathway is stimulus dependent

    Get PDF
    The PI-3 kinase-Akt pathway plays a role in cartilage anabolic as well as catabolic processes in response to activation by insulin-like growth factor-1 (IGF-1) and the pro-inflammatory cytokines interleukin-1β (IL-1β) and oncostatin M (OSM). The goal of this study was to determine how PI-3 kinase-Akt signaling regulates these seemingly opposing functions

    Function of the chondrocyte PI-3 kinase-Akt signaling pathway is stimulus dependent

    Get PDF
    The PI-3 kinase-Akt pathway plays a role in cartilage anabolic as well as catabolic processes in response to activation by insulin-like growth factor-1 (IGF-1) and the pro-inflammatory cytokines interleukin-1β (IL-1β) and oncostatin M (OSM). The goal of this study was to determine how PI-3 kinase-Akt signaling regulates these seemingly opposing functions

    Intrinsic tunneling spectra of Bi_2(Sr_{2-x}La_x)CuO_6

    Full text link
    We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi_2Sr_{2-x}La_xCuO_{6+\delta} (Bi2201-La_x). Despite a difference of a factor of three in the optimal superconducting critical temperatures for Bi2201-La_{0.4} and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T*\approx 230-300K for both compounds. We find also that in Bi2201-La_x, PG humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.Comment: Submitted to Phys. Rev. Let

    Instability of a Landau Fermi liquid as the Mott insulator is approached

    Full text link
    We examine a two-dimensional Fermi liquid with a Fermi surface which touches the Umklapp surface first at the 4 points (±π/2,±π/2)(\pm \pi/2, \pm \pi/2) as the electron density is increased. Umklapp processes at the 4 patches near (±π/2,±π/2)(\pm \pi/2, \pm\pi/2) lead the renormalization group equations to scale to strong coupling resembling the behavior of a 2-leg ladder at half-filling. The incompressible character of the fixed point causes a breakdown of Landau theory at these patches. A further increase in density spreads the incompressible regions so that the open Fermi surface shrinks to 4 disconnected segments. This non-Landau state, in which parts of the Fermi surface are truncated to form an insulating spin liquid, has many features in common with phenomenological models recently proposed for the cuprate superconductors.Comment: Minor changes. LaTeX2e, 12 pages, 5 figures. J. Phys. CM 10 (1998) L38

    A Theory of the Pseudogap State of the Cuprates

    Full text link
    The phase diagram for a general model for Cuprates is derived in a mean-field approximation. A phase violating time-reversal without breaking translational symmetry is possible when both the ionic interactions and the local repulsions are large compared to the energy difference between the Cu and O single-particle levels. It ends at a quantum critical point as the hole or electron doping is increased. Such a phase is necessarily accompanied by singular forward scattering such that, in the stable phase, the density of states at the chemical potential, projected to a particular point group symmetry of the lattice is zero producing thereby an anisotropic gap in the single-particle spectrum. It is suggested that this phase occupies the "pseudogap" region of the phase diagram of the cuprates. The temperature dependence of the single-particle spectra, the density of states, the specific heat and the magnetic susceptibility are calculated with rather remarkable correspondence with the experimental results. The importance of further direct experimental verification of such a phase in resolving the principal issues in the theory of the Cuprate phenomena is pointed out. To this end, some predictions are provided.Comment: 41 pages, 8 figure

    The Temperature Evolution of the Spectral Peak in High Temperature Superconductors

    Full text link
    Recent photoemission data in the high temperature cuprate superconductor Bi2212 have been interpreted in terms of a sharp spectral peak with a temperature independent lifetime, whose weight strongly decreases upon heating. By a detailed analysis of the data, we are able to extract the temperature dependence of the electron self-energy, and demonstrate that this intepretation is misleading. Rather, the spectral peak loses its integrity above Tc due to a large reduction in the electron lifetime.Comment: 5 pages, revtex, 4 encapsulated postscript figure

    Discrimination between the superconducting gap and the pseudo-gap in Bi2212 from intrinsic tunneling spectroscopy in magnetic field

    Full text link
    Intrinsic tunneling spectroscopy in high magnetic field (HH) is used for a direct test of superconducting features in a quasiparticle density of states of high-TcT_c superconductors. We were able to distinguish with a great clarity two co-existing gaps: (i) the superconducting gap, which closes as H→Hc2(T)H \to H_{c2}(T) and T→Tc(H)T\to T_c(H), and (ii) the cc-axis pseudo-gap, which does not change neither with HH, nor TT. Strikingly different magnetic field dependencies, together with previously observed different temperature dependencies of the two gaps ~\cite{Krasnov}, speak against the superconducting origin of the pseudo-gap.Comment: 4 pages, 4 eps figure
    • …
    corecore