891 research outputs found

    Towards the Distribution of the Size of a Largest Planar Matching and Largest Planar Subgraph in Random Bipartite Graphs

    Get PDF
    We address the following question: When a randomly chosen regular bipartite multi--graph is drawn in the plane in the ``standard way'', what is the distribution of its maximum size planar matching (set of non--crossing disjoint edges) and maximum size planar subgraph (set of non--crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) problem (also called Ulam's problem). We present combinatorial identities which relate the number of r-regular bipartite multi--graphs with maximum planar matching (maximum planar subgraph) of at most d edges to a signed sum of restricted lattice walks in Z^d, and to the number of pairs of standard Young tableaux of the same shape and with a ``descend--type'' property. Our results are obtained via generalizations of two combinatorial proofs through which Gessel's identity can be obtained (an identity that is crucial in the derivation of a bivariate generating function associated to the distribution of LISs, and key to the analytic attack on Ulam's problem). We also initiate the study of pattern avoidance in bipartite multigraphs and derive a generalized Gessel identity for the number of bipartite 2-regular multigraphs avoiding a specific (monotone) pattern.Comment: 19 pages, 8 figure

    Geometric representations of linear codes

    Full text link
    We say that a linear code C over a field F is triangular representable if there exists a two dimensional simplicial complex Δ\Delta such that C is a punctured code of the kernel ker Δ\Delta of the incidence matrix of Δ\Delta over F and there is a linear mapping between C and ker Δ\Delta which is a bijection and maps minimal codewords to minimal codewords. We show that the linear codes over rationals and over GF(p), where p is a prime, are triangular representable. In the case of finite fields, we show that this representation determines the weight enumerator of C. We present one application of this result to the partition function of the Potts model. On the other hand, we show that there exist linear codes over any field different from rationals and GF(p), p prime, that are not triangular representable. We show that every construction of triangular representation fails on a very weak condition that a linear code and its triangular representation have to have the same dimension.Comment: 20 pages, 8 figures, v3 major change

    Directed cycle double covers: structure and generation of hexagon graphs

    Full text link
    Jaeger's directed cycle double cover conjecture can be formulated as a problem of existence of special perfect matchings in a class of graphs that we call hexagon graphs. In this work, we explore the structure of hexagon graphs. We show that hexagon graphs are braces that can be generated from the ladder on 8 vertices using two types of McCuaig's augmentations.Comment: 20 page
    corecore