206 research outputs found

    Evidence of Genetic Instability in Tumors and Normal Nearby Tissues

    Get PDF
    We have analyzed the sequence heterogeneity of the transcripts of the human HPRT and G6PD single copy genes that are not considered tumor markers. Analyses have been performed on different colon cancers and on the nearby histologically normal tissues of two male patients. Several copies of each cDNA, which were produced by cloning the RT-PCR-amplified fragments of the specific mRNA, have been sequenced. Similar analyses have been performed on blood samples of two ostensibly healthy males as reference controls. The sequence heterogeneity of the HPRT and G6PD genes was also determined on DNA from tumor tissues. The employed analytical approach revealed the presence of low-frequency mutations not detectable by other procedures. The results show that genetic heterogeneity is detectable in HPRT and G6PD transcripts in both tumors and nearby healthy tissues of the two studied colon tumors. Similar frequencies of mutations are observed in patient genomic DNA, indicating that mutations have a somatic origin. HPRT transcripts show genetic heterogeneity also in healthy individuals, in agreement with previous results on human T-cells, while G6PD transcript heterogeneity is a characteristic of the patient tissues. Interestingly, data on TP53 show little, if any, heterogeneity in the same tissues. CONCLUSIONS/SIGNIFICANCE: These findings show that genetic heterogeneity is a peculiarity not only of cancer cells but also of the normal tissue where a tumor arises

    Development of a new ultra sensitive real-time PCR assay (ultra sensitive RTQ-PCR) for the quantification of HBV-DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improved sensitivity of HBV-DNA tests is of critical importance for the management of HBV infection. Our aim was to develop and assess a new ultra sensitive in-house real-time PCR assay for HBV-DNA quantification (ultra sensitive RTQ-PCR).</p> <p>Results</p> <p>Previously used HBV-DNA standards were calibrated against the WHO 1<sup>st </sup>International Standard for HBV-DNA (OptiQuant<sup>® </sup>HBV-DNA Quantification Panel, Accrometrix Europe B.V.). The 95% and 50% HBV-DNA detection end-point of the assay were 22.2 and 8.4 IU/mL. According to the calibration results, 1 IU/mL equals 2.8 copies/mL. Importantly the clinical performance of the ultra sensitive real-time PCR was tested similar (67%) to the Procleix Ultrio discriminatory HBV test (dHBV) (70%) in low-titer samples from patients with occult Hepatitis B. Finally, in the comparison of ultra sensitive RTQ-PCR with the commercially available COBAS TaqMan HBV Test, the in-house assay identified 94.7% of the 94 specimens as positive versus 90.4% identified by TaqMan, while the quantitative results that were positive by both assay were strongly correlated (<it>r </it>= 0.979).</p> <p>Conclusions</p> <p>We report a new ultra sensitive real time PCR molecular beacon based assay with remarkable analytical and clinical sensitivity, calibrated against the WHO 1<sup>st </sup>International standard.</p

    Effects of Interferon-α/β on HBV Replication Determined by Viral Load

    Get PDF
    Interferons α and β (IFN-α/β) are type I interferons produced by the host to control microbial infections. However, the use of IFN-α to treat hepatitis B virus (HBV) patients generated sustained response to only a minority of patients. By using HBV transgenic mice as a model and by using hydrodynamic injection to introduce HBV DNA into the mouse liver, we studied the effect of IFN-α/β on HBV in vivo. Interestingly, our results indicated that IFN-α/β could have opposite effects on HBV: they suppressed HBV replication when viral load was high and enhanced HBV replication when viral load was low. IFN-α/β apparently suppressed HBV replication via transcriptional and post-transcriptional regulations. In contrast, IFN-α/β enhanced viral replication by inducing the transcription factor HNF3γ and activating STAT3, which together stimulated HBV gene expression and replication. Further studies revealed an important role of IFN-α/β in stimulating viral growth and prolonging viremia when viral load is low. This use of an innate immune response to enhance its replication and persistence may represent a novel strategy that HBV uses to enhance its growth and spread in the early stage of viral infection when the viral level is low

    GC content around splice sites affects splicing through pre-mRNA secondary structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (<it>Homo sapiens</it>), mice (<it>Mus musculus</it>), fruit flies (<it>Drosophila melanogaster</it>), and nematodes (<it>Caenorhabditis elegans</it>) to further investigate this phenomenon.</p> <p>Results</p> <p>We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures.</p> <p>Conclusion</p> <p>All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.</p

    Resistance Exercise Reverses Aging in Human Skeletal Muscle

    Get PDF
    Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training

    p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells.</p> <p>Methods</p> <p>Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated.</p> <p>Results</p> <p>YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics.</p> <p>Conclusion</p> <p>Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists.</p

    The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer

    Get PDF
    INTRODUCTION: ISG15 is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, alterations in the ISG15 signalling pathway have also been found in several human tumour entities. To the best of our knowledge, in the current study we present for the first time a systematic characterisation of ISG15 expression in human breast cancer and normal breast tissue both at the mRNA and protein level. METHOD: Using semiquantitative real-time PCR, cDNA dot-blot hybridisation and immunohistochemistry, we systematically analysed ISG15 expression in invasive breast carcinomas (n = 910) and normal breast tissues (n = 135). ISG15 protein expression was analysed in two independent cohorts on tissue microarrays; in an initial evaluation set of 179 breast carcinomas and 51 normal breast tissues; and in a second large validation set of 646 breast carcinomas and 10 normal breast tissues. In addition, a collection of benign and malignant mammary cell lines (n = 9) were investigated for ISG15 expression. RESULTS: ISG15 was overexpressed in breast carcinoma cells compared with normal breast tissue, both at the RNA and protein level. Recurrence-free (p = 0.030), event-free (p = 0.001) and overall (p = 0.001) survival analyses showed a significant correlation between ISG15 overexpression and unfavourable prognosis. CONCLUSION: Therefore, ISG15 may represent a novel breast tumour marker with prognostic significance and may be helpful in selecting patients for and predicting response to the treatment of human breast cancer

    Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer

    Get PDF
    Bladder cancer is among the most prevalent malignancies, and is characterised by frequent tumour recurrences and localised inflammation, which may promote tissue invasion and metastasis. Microarray analysis was used to compare gene expression in normal bladder urothelium with that in tumours at different stages of progression. The innate immune response gene, interferon-stimulated gene 15 kDa (ISG15, GIP2), was highly expressed at all stages of bladder cancer as compared to normal urothelium. Western blotting revealed a tumour-associated expression of ISG15 protein. ISG15 exhibited a stage-associated expression, with significantly (P<0.05) higher levels of ISG15 protein in muscle-invasive T2–T4 tumours, compared with normal urothelium. Although ISG15 is involved in the primary immune response, ISG15 expression did not correlate with bladder inflammation. However, immunohistochemical staining revealed expression of ISG15 protein in both cancer cells and stromal immune cells. Interestingly, a significant fraction of ISG15 protein was localised to the nuclei of tumour cells, whereas no nuclear ISG15 staining was observed in ISG15-positive stromal cells. Taken together, our findings identify ISG15 as a novel component of bladder cancer-associated gene expression
    corecore