5,541 research outputs found

    Probing the Epoch of Early Baryonic Infall Through 21cm Fluctuations

    Full text link
    After cosmological recombination, the primordial hydrogen gas decoupled from the cosmic microwave background (CMB) and fell into the gravitational potential wells of the dark matter. The neutral hydrogen imprinted acoustic oscillations on the pattern of brightness fluctuations due to its redshifted 21cm absorption of the CMB. Unlike CMB temperature fluctuations which probe the power spectrum at cosmic recombination, we show that observations of the 21cm fluctuations at z ~ 20-200 can measure four separate fluctuation modes (with a fifth mode requiring very high precision), thus providing a unique probe of the geometry and composition of the universe.Comment: 5 pages, 4 figures, MNRAS Letters, accepte

    C.V.D. annual report: January, 1967 research project ru27-1 : analogue study of semiconductor device structures

    Get PDF
    The e::tension of the resistance network analogue method to the study of a M.O.S.T. structure is described. By means of an iterative technique, data regarding channel current, field distribution, surface charge and position of pinch-off point as function of gate and drain voltagen can be obtained which do not involve the usual 'gradual' channel approximation Results for a particular device geometry are presented. A discussion of a digital computer approach to the solution of semiconductor device current flow problems is included, together with preliminary results

    The Cosmic Microwave Background and the Ionization History of the Universe

    Full text link
    Details of how the primordial plasma recombined and how the universe later reionized are currently somewhat uncertain. This uncertainty can restrict the accuracy of cosmological parameter measurements from the Cosmic Microwave Background (CMB). More positively, future CMB data can be used to constrain the ionization history using observations. We first discuss how current uncertainties in the recombination history impact parameter constraints, and show how suitable parameterizations can be used to obtain unbiased parameter estimates from future data. Some parameters can be constrained robustly, however there is clear motivation to model recombination more accurately with quantified errors. We then discuss constraints on the ionization fraction binned in redshift during reionization. Perfect CMB polarization data could in principle distinguish different histories that have the same optical depth. We discuss how well the Planck satellite may be able to constrain the ionization history, and show the currently very weak constraints from WMAP three-year data.Comment: Changes to match MNRAS accepted versio

    Constraining the unexplored period between reionization and the dark ages with observations of the global 21 cm signal

    Full text link
    Observations of the frequency dependence of the global brightness temperature of the redshifted 21 cm line of neutral hydrogen may be possible with single dipole experiments. In this paper, we develop a Fisher matrix formalism for calculating the sensitivity of such instruments to the 21 cm signal from reionization and the dark ages. We show that rapid reionization histories with duration delta z< 2 can be constrained, provided that local foregrounds can be well modelled by low order polynomials. It is then shown that observations in the range nu = 50 - 100 MHz can feasibly constrain the Lyman alpha and X-ray emissivity of the first stars forming at z = 15 - 25, provided that systematic temperature residuals can be controlled to less than 1 mK. Finally, we demonstrate the difficulty of detecting the 21 cm signal from the dark ages before star formation.Comment: 11 pages, 14 figures, submitted to PR

    Constraints on Off-Axis X-Ray Emission from Beamed GRBs

    Get PDF
    We calculate the prompt x-ray emission as a function of viewing angle for beamed Gamma-Ray Burst (GRB) sources. Prompt x-rays are inevitable due to the less highly blueshifted photons emitted at angles greater than 1/gamma relative to the beam symmetry axis, where gamma is the expansion Lorentz factor. The observed flux depends on the combinations (gamma Delta theta) and (gamma theta_v), where (Delta theta) is the beaming angle and theta_v is the viewing angle. We use the observed source counts of gamma-ray-selected GRBs to predict the minimum detection rate of prompt x-ray bursts as a function of limiting sensitivity. We compare our predictions with the results from the Ariel V catalog of fast x-ray transients, and find that Ariel's sensitivity is not great enough to place significant constraints on gamma and (Delta theta). We estimate that a detector with fluence limit ~10^{-7} erg/cm^2 in the 2-10 keV channel will be necessary to distinguish between geometries. Because the x-ray emission is simultaneous with the GRB emission, our predicted constraints do not involve any model assumptions about the emission physics but simply follow from special-relativistic considerations.Comment: Submitted to Ap

    Variability of GRB Afterglows Due to Interstellar Turbulence

    Get PDF
    Gamma-Ray Burst (GRB) afterglows are commonly interpreted as synchrotron emission from a relativistic blast wave produced by a point explosion in an ambient medium, plausibly the interstellar medium of galaxies. We calculate the amplitude of flux fluctuations in the lightcurve of afterglows due to inhomogeneities in the surrounding medium. Such inhomogeneities are an inevitable consequence of interstellar turbulence, but could also be generated by variability and anisotropy in a precursor wind from the GRB progenitor. Detection of their properties could provide important clues about the environments of GRB sources. We apply our calculations to GRB990510, where an rms scatter of 2% was observed for the optical flux fluctuations on the 0.1--2 hour timescale during the first day of the afterglow, consistent with it being entirely due to photometric noise (Stanek et al. 1999). The resulting upper limits on the density fluctuations on scales of 20-200 AU around the source of GRB990510, are lower than the inferred fluctuation amplitude on similar scales in the Galactic interstellar medium. Hourly monitoring of future optical afterglows might therefore reveal fractional flux fluctuations at the level of a few percent.Comment: 18 pages, submitted to Ap

    Global 21cm signal experiments: a designer's guide

    No full text
    [Abridged] The spatially averaged global spectrum of the redshifted 21cm line has generated much experimental interest, for it is potentially a direct probe of the Epoch of Reionization and the Dark Ages. Since the cosmological signal here has a purely spectral signature, most proposed experiments have little angular sensitivity. This is worrisome because with only spectra, the global 21cm signal can be difficult to distinguish from foregrounds such as Galactic synchrotron radiation, as both are spectrally smooth and the latter is orders of magnitude brighter. We establish a mathematical framework for global signal data analysis in a way that removes foregrounds optimally, complementing spectra with angular information. We explore various experimental design trade-offs, and find that 1) with spectral-only methods, it is impossible to mitigate errors that arise from uncertainties in foreground modeling; 2) foreground contamination can be significantly reduced for experiments with fine angular resolution; 3) most of the statistical significance in a positive detection during the Dark Ages comes from a characteristic high-redshift trough in the 21cm brightness temperature; and 4) Measurement errors decrease more rapidly with integration time for instruments with fine angular resolution. We show that if observations and algorithms are optimized based on these findings, an instrument with a 5 degree beam can achieve highly significant detections (greater than 5-sigma) of even extended (high Delta-z) reionization scenarios after integrating for 500 hrs. This is in contrast to instruments without angular resolution, which cannot detect gradual reionization. Abrupt ionization histories can be detected at the level of 10-100's of sigma. The expected errors are also low during the Dark Ages, with a 25-sigma detection of the expected cosmological signal after only 100 hrs of integration.Comment: 34 pages, 30 figures. Replaced (v2) to match accepted PRD version (minor pedagogical additions to text; methods, results, and conclusions unchanged). Fixed two typos (v3); text, results, conclusions etc. completely unchange

    Separating out the Alcock-Paczynski Effect on 21cm Fluctuations

    Full text link
    We reconsider the Alcock-Paczynski effect on 21cm fluctuations from high redshift, focusing on the 21cm power spectrum. We show that at each accessible redshift both the angular diameter distance and the Hubble constant can be determined from the power spectrum. Furthermore, this is possible using anisotropies that depend only on linear density perturbations and not on astrophysical sources of 21cm fluctuations. We show that measuring these quantities at high redshift would not just confirm results from the cosmic microwave background but provide appreciable additional sensitivity to cosmological parameters and dark energy.Comment: 6 pages, 3 figures, MNRAS, revised versio
    corecore