857 research outputs found
Long noncoding RNAs during normal and malignant hematopoiesis
Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant DK068348)National Heart, Lung, and Blood Institute (Grant 5P01 HL066105
Control of cellular automata
We study the problem of master-slave synchronization and control of
totalistic cellular automata (CA) by putting a fraction of sites of the slave
equal to those of the master and finding the distance between both as a
function of this fraction. We present three control strategies that exploit
local information about the CA, mainly, the number of nonzero Boolean
derivatives. When no local information is used, we speak of synchronization. We
find the critical properties of control and discuss the best control strategy
compared with synchronization
Spatial curvature effects on molecular transport by diffusion
For a substance diffusing on a curved surface, we obtain an explicit relation
valid for very small values of the time, between the local concentration, the
diffusion coefficient, the intrinsic spatial curvature and the time. We recover
the known solution of Fick's law of diffusion in the flat space limit. In the
biological context, this result would be useful in understanding the variations
in the diffusion rates of integral proteins and other molecules on membranes.Comment: 10 page
Pattern formation driven by nematic ordering of assembling biopolymers
The biopolymers actin and microtubules are often in an ongoing
assembling/disassembling state far from thermal equilibrium. Above a critical
density this leads to spatially periodic patterns, as shown by a scaling
argument and in terms of a phenomenological continuum model, that meets also
Onsager's statistical theory of the nematic--to--isotropic transition in the
absence of reaction kinetics.
This pattern forming process depends much on nonlinear effects and a common
linear stability analysis of the isotropic distribution of the filaments is
often misleading. The wave number of the pattern decreases with the
assembling/disassembling rate and there is an uncommon discontinuous transition
between the nematic and the periodic state.Comment: 4 pages, 3 figure
A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 Acute Lymphocytic Leukemia cells
MLL-AF4 Acute Lymphocytic Leukemia has a poor prognosis, and the mechanisms by which these leukemias develop are not understood despite intensive research based on well-known concepts and methods. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that post-transcriptionally regulate expression of target mRNA transcripts. We recently reported that ectopic expression of miR-128b together with miR-221, two of the miRNAs downregulated in MLL-AF4 ALL, restores glucocorticoid resistance through downregulation of the MLL-AF4 chimeric fusion proteins MLL-AF4 and AF4-MLL that are generated by chromosomal translocation t(4;11). Here we report the identification of new mutations in miR-128b in RS4;11 cells, derived from MLL-AF4 ALL patient. One novel mutation significantly reduces the processing of miR-128b. Finally, this base change occurs in a primary MLL-AF4 ALL sample as an acquired mutation. These results demonstrate that the novel mutation in miR-128b in MLL-AF4 ALL alters the processing of miR-128b and that the resultant downregulation of mature miR-128b contributes to glucocorticoid resistance through the failure to downregulate the fusion oncogenes.National Institutes of Health (U.S.) (NIH Grant R01 DK068348)Netherlands Organization for Scientific ResearchDutch Cancer SocietyJapan Society for the Promotion of Scienc
Pediatric Cushing disease: disparities in disease severity and outcomes in the Hispanic and African-American populations.
BackgroundLittle is known about the contribution of racial and socioeconomic disparities to severity and outcomes in children with Cushing disease (CD).MethodsA total of 129 children with CD, 45 Hispanic/Latino or African-American (HI/AA) and 84 non-Hispanic White (non-HW), were included in this study. A 10-point index for rating severity (CD severity) incorporated the degree of hypercortisolemia, glucose tolerance, hypertension, anthropomorphic measurements, disease duration, and tumor characteristics. Race, ethnicity, age, gender, local obesity prevalence, estimated median income, and access to care were assessed in regression analyses of CD severity.ResultsThe mean CD severity in the HI/AA group was worse than that in the non-HW group (4.9±2.0 vs. 4.1±1.9, P=0.023); driving factors included higher cortisol levels and larger tumor size. Multiple regression models confirmed that race (P=0.027) and older age (P=0.014) were the most important predictors of worse CD severity. When followed up a median of 2.3 years after surgery, the relative risk for persistent CD combined with recurrence was 2.8 times higher in the HI/AA group compared with that in the non-HW group (95% confidence interval: 1.2-6.5).ConclusionOur data show that the driving forces for the discrepancy in severity of CD are older age and race/ethnicity. Importantly, the risk for persistent and recurrent CD was higher in minority children
Michaelis-Menten Relations for Complex Enzymatic Networks
All biological processes are controlled by complex systems of enzymatic
chemical reactions. Although the majority of enzymatic networks have very
elaborate structures, there are many experimental observations indicating that
some turnover rates still follow a simple Michaelis-Menten relation with a
hyperbolic dependence on a substrate concentration. The original
Michaelis-Menten mechanism has been derived as a steady-state approximation for
a single-pathway enzymatic chain. The validity of this mechanism for many
complex enzymatic systems is surprising. To determine general conditions when
this relation might be observed in experiments, enzymatic networks consisting
of coupled parallel pathways are investigated theoretically. It is found that
the Michaelis-Menten equation is satisfied for specific relations between
chemical rates, and it also corresponds to the situation with no fluxes between
parallel pathways. Our results are illustrated for simple models. The
importance of the Michaelis-Menten relationship and derived criteria for
single-molecule experimental studies of enzymatic processes are discussed.Comment: 10 pages, 4 figure
Analytical study of the effect of recombination on evolution via DNA shuffling
We investigate a multi-locus evolutionary model which is based on the DNA
shuffling protocol widely applied in \textit{in vitro} directed evolution. This
model incorporates selection, recombination and point mutations. The simplicity
of the model allows us to obtain a full analytical treatment of both its
dynamical and equilibrium properties, for the case of an infinite population.
We also briefly discuss finite population size corrections
- …