61 research outputs found

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    A Rab10:RalA G protein cascade regulates insulin-stimulated glucose uptake in adipocytes

    No full text
    Insulin-stimulated glucose uptake in fat and muscle is mediated by the major facilitative glucose transporter Glut4. Insulin controls the trafficking of Glut4 to the plasma membrane via regulation of a series of small G proteins, including RalA and Rab10. We demonstrate here that Rab10 is a bona fide target of the GTPase-activating protein AS160, which is inhibited after phosphorylation by the protein kinase Akt. Once activated, Rab10 can increase the GTP binding of RalA by recruiting the Ral guanyl nucleotide exchange factor, Rlf/Rgl2. Rab10 and RalA reside in the same pool of Glut4-storage vesicles in untreated cells, and, together with Rlf, they ensure maximal glucose transport. Overexpression of membrane-tethered Rlf compensates for the loss of Rab10 in Glut4 translocation, suggesting that Rab10 recruits Rlf to membrane compartments for RalA activation and that RalA is downstream of Rab10. Together these studies identify a new G protein cascade in the regulation of insulin-stimulated Glut4 trafficking and glucose uptake
    corecore