16 research outputs found

    Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes.

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP-1) is a multidomain multifunctional nuclear enzyme involved in the regulation of the chromatin structure and transcription. PARP-1 consists of three functional domains: the N-terminal DNA-binding domain (DBD) containing three zinc fingers, the automodification domain (A), and the C-terminal domain, which includes the protein interacting WGR domain (W) and the catalytic (Cat) subdomain responsible for the poly(ADP ribosyl)ating reaction. The mechanisms coordinating the functions of these domains and determining the positioning of PARP-1 in chromatin remain unknown. Using multiple deletional isoforms of PARP-1, lacking one or another of its three domains, as well as consisting of only one of those domains, we demonstrate that different functions of PARP-1 are coordinated by interactions among these domains and their targets. Interaction between the DBD and damaged DNA leads to a short-term binding and activation of PARP-1. This hit and run activation of PARP-1 initiates the DNA repair pathway at a specific point. The long-term chromatin loosening required to sustain transcription takes place when the C-terminal domain of PARP-1 binds to chromatin by interacting with histone H4 in the nucleosome. This long-term activation of PARP-1 results in a continuous accumulation of pADPr, which maintains chromatin in the loosened state around a certain locus so that the transcription machinery has continuous access to DNA. Cooperation between the DBD and C-terminal domain occurs in response to heat shock (HS), allowing PARP-1 to scan chromatin for specific binding sites

    Non-NAD-Like poly(ADP-Ribose) Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo

    Full text link
    The clinical potential of PARP-1 inhibitors has been recognized N10 years ago, prompting intensive research on their pharmacological application in several branches of medicine, particularly in oncology. However, natural or acquired resistance of tumors to known PARP-1 inhibitors poses a serious problemfor their clinical implementation. Present study aims to reignite clinical interest to PARP-1 inhibitors by introducing a new method of identifying highly potent inhibitors and presenting the largest known collection of structurally diverse inhibitors. The majority of PARP-1 inhibitors known to date have been developed as NAD competitors. NAD is utilized by many enzymes other than PARP-1, resulting in a trade-off trap between their specificity and efficacy. To circumvent this problem, we have developed a new strategy to blindly screen a small molecule library for PARP-1 inhibitors by targeting a highly specific rout of its activation. Based on this screen, we present a collection of PARP-1 inhibitors and provide their structural classification. In addition to compounds that show structural similarity to NAD or known PARP-1 inhibitors, the screen identified structurally newnon-NAD-like inhibitors that block PARP-1 activity in cancer cellswith greater efficacy and potency than classical PARP-1 inhibitors currently used in clinic. These non-NAD-like PARP-1 inhibitors are effective against several types of human cancer xenografts, including kidney, prostate, and breast tumors in vivo. Our pre-clinical testing of these inhibitors using laboratory animals has established a strong foundation for advancing the new inhibitors to clinical trials

    SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection

    No full text
    Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNβ, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53′s role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies

    DNA Methylation Malleability and Dysregulation in Cancer Progression: Understanding the Role of PARP1

    No full text
    Mammalian genomic DNA methylation represents a key epigenetic modification and its dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-expression patterns makes it the key governing mechanism of epigenetic change to the next generation of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of inheritable diseases, including cancer. We outline recent advancements in understanding how DNA modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation. In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological inhibitors, and their relevance as a combination therapy are highlighted

    The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes

    No full text
    Background: Classical Hodgkin lymphoma (cHL) is a unique lymphoid malignancy with a tumor microenvironment (TME) consisting of a small number of neoplastic—Hodgkin and Reed-Sternberg (H-RS) cells (\u3c1%), surrounded by a large number of nonneoplastic infiltrating immune cells (\u3e90%). The TME of cHL critically depends on immune cells to support tumor growth as H-RS cells cannot survive and proliferate in isolation. Recent Findings: Programmed cell death protein 1 (PD-1) ligand expressed on H-RS cells inhibits the clearance of tumor by causing T-cell exhaustion. Nivolumab and pembrolizumab, PD-1 inhibitors, have been proven to be effective in treating adult and pediatric patients with R/R cHL. Tumor-associated macrophages (TAMs) are a central component of TME and are known to cause poor prognosis in adult HL. However, the prognostic impact of CD68+ TAMs in pediatric HL remains ambiguous. EBV modulates the tumor milieu of HL and plays a strategic role in immune escape by enrichment of the TME with Treg cells and associated immunosuppressive cytokines in adult HL. In contrast, EBV+ pediatric patients have increased infiltration of CD8+ T-cells and show a better therapeutic response suggesting viral-related TME is distinct in childhood HL. The role of CASP3 in apoptosis of H-RS cells and its correlation with response prediction in adult and pediatric HL suggest it may serve as a potential biomarker. In cHL, CD30, EBV, and NF-κB signaling employ exosomes for cell–cell communication that triggers the migration capacity of fibroblasts, stimulate to produce proinflammatory cytokines, and help to create a tumor-supportive microenvironment. Conclusion: The cHL microenvironment is distinct in adult and pediatric HL. Future studies are required to understand the role of interplay between H-RS cells and EBV-associated microenvironment and their clinical outcome. They may present novel therapeutic targets for the development of antilymphoma therapy

    Age-Related Changes of Gene Expression Profiles in Drosophila

    No full text
    An individual’s gene expression profile changes throughout their life. This change in gene expression is shaped by differences in physiological needs and functions between the younger and older organism. Despite intensive studies, the aging process is not fully understood, and several genes involved in this process may remain to be identified. Here we report a transcriptomic analysis of Drosophila melanogaster using microarrays. We compared the expression profiles of two-day-old female adult flies with those of 45-day-old flies. We identified 1184 genes with pronounced differences in expression level between young and old age groups. Most genes involved in muscle development/maintenance that display different levels of expression with age were downregulated in older flies. Many of these genes contributed to sarcomere formation and function. Several of these genes were functionally related to direct and indirect flight muscles; some of them were exclusively expressed in these muscles. Conversely, several genes involved in apoptosis processes were upregulated in aging flies. In addition, several genes involved in resistance to toxic chemicals were upregulated in aging flies, which is consistent with a global upregulation of the defense response system in aging flies. Finally, we randomly selected 12 genes among 232 genes with unknown function and generated transgenic flies expressing recombinant proteins fused with GFP protein to determine their subcellular expression. We also found that the knockdown of some of those 12 genes can affect the lifespan of flies

    The TATA-Box Sequence in the Basal Promoter Contributes to Determining Light-Dependent Gene Expression in Plants

    No full text
    A prototype 13-bp TATA-box sequence, TCACTATATATAG, was mutated at each nucleotide position and examined for its function in the core promoter. Specific nucleotides in the first TATA, the second TATA, as well as the flanking sequences influenced promoter function in transient transformation of tobacco (Nicotiana tabacum var Petit Havana) leaves. The effect of a given mutation on reporter gene expression in light versus dark was variable and sometimes contrasting. Some mutations, like T(7) or A(8)→C or G, completely inactivated the expression of the minimal promoter in light but not in dark. In general, the sequence requirement for dark expression was less stringent than that for light expression. The selective effect of TATA-box mutations on light versus dark expression was exerted on core promoter function in the chromatin-integrated state also. Even in the presence of an upstream light response activator element, TATA-box mutations influenced modulation of the promoter by light. An A at the eighth position was specifically involved in the red light response of the promoter. Selectivity in gene expression was associated with a high level of transcript initiation from a site that was not active in the dark. Nuclear proteins from dark- and light-grown seedlings showed that the sequence variation within the TATA-box governs the formation of alternative transcriptional complexes. The experiments give direct evidence for the role of a core TATA-box sequence in determining the level as well as selectivity of gene expression in plants

    Synergetic effect of high dose rate radiations (10× FFF/2400 MU/min/10 MV x-rays) and paclitaxel selectively eliminates melanoma cells

    No full text
    Background: Melanoma is one of the most aggressive cancers, with 1.6% of total cancer deaths in the United States. In recent years treatment options for metastatic melanoma have been improved by the FDA approval of new therapeutic agents. However, these inhibitors-based therapies are non-specific and have severe toxicities, including hyperkeratosis, photosensitivity, hepatitis, arthralgia, and fatigue. Aims: The aim of this study is to determine the synthetic lethal effect (paclitaxel and radiations) on melanoma cells and reduce the total radiation doses by increasing the dose rates up to 2400 MU/min. Methods and Results: We previously reported a radiation treatment (10 MV x-rays, 10X-FFF, dose rate 2400MU/min, low total dose 0.5 Gy) that kills melanoma cells with 80% survival of normal HEM in vitro. In this study, we extended the radiation cycle up to four and included paclitaxel treatment to study the synthetic lethal effect on melanoma and two other normal primary cells, HDF and HEK. Cells were treated with paclitaxel prior to the radiation at a dose rate of 400 and 2400 MU/min with a total radiation dose of only 0.5 Gy. Mitochondrial respiration assay, DNA damage assay, and colony formation assays were performed to study apoptosis and cell death induction. Four days of consequent radiation treatment with paclitaxel significantly reduces the survival of melanoma cells by inducing apoptosis and mitochondrial damage. After treatment, excessive DNA damage in melanoma cells leads to an increase in the expression of pro-apoptotic genes (Caspase-3) and a decrease in the expression of DNA repair gene (PARP1) and anti-apoptotic gene (Bcl-2) to activate the apoptosis pathway. The combination of paclitaxel and radiation reduces the survival of melanoma cells colonies compared to radiation alone. Conclusion: Our study indicates that radiations with paclitaxel have a potential synthetic lethal effect on melanoma cells and can be developed as a melanoma therapy without toxicities or harmful effects on normal primary skin cells
    corecore