5 research outputs found

    Antibody-antigen kinetics constrain intracellular humoral immunity

    No full text
    During infection with non-enveloped viruses, antibodies stimulate immunity from inside cells by activating the cytosolic Fc receptor TRIM21. This intracellular humoral response relies on opsonized viral particles reaching the cytosol intact but the antigenic and kinetic constraints involved are unknown. We have solved the structure of a potent TRIM21-dependent neutralizing antibody in complex with human adenovirus 5 hexon and show how these properties influence immune activity. Structure-guided mutagenesis was used to generate antibodies with 20,000-fold variation in affinity, on-rates that differ by ~50-fold and off-rates by >175-fold. Characterization of these variants during infection revealed that TRIM21-dependent neutralization and NFκB activation was largely unaffected by on-rate kinetics. In contrast, TRIM21 antiviral activity was exquisitely dependent upon off-rate, with sub-μM affinity antibodies nevertheless unable to stimulate signaling because of fast dissociation kinetics. These results define the antibody properties required to elicit an efficient intracellular immune response during viral infection

    Corrigendum: Antibody-antigen kinetics constrain intracellular humoral immunity

    No full text
    This Article contains a typographical error in the Methods section under the subheading ‘Crystallization’, where the Protein Data Bank accession code ‘5LDN’ was incorrectly given as ‘5LDV’

    Cluster of symptomatic silicone oil droplets following intravitreal injections: A 1-year observational study

    No full text
    Objective To describe a cluster of symptomatic intravitreal silicone oil (SiO) droplets following intravitreal injections (IVIs) and assess the effect of switching to a SiO-free syringe. Methods and analysis Observational quality registry study of patients receiving IVI at a large Norwegian ophthalmology centre between April 2018 (start of cluster) and November 2019 (1 year after switching to SiO-free syringes). At onset, anti-vascular endothelial growth factor drugs were administered using SiO-containing insulin syringes. From November 2018, SiO-free syringes were implemented. Spontaneously reported symptomatic SiO cases were confirmed by slit-lamp examination. A follow-up interview was performed after 1 year, assessing visual complaints. The prevalence of non-symptomatic cases was assessed in a sample of 50 eyes from 50 consecutive IVI patients. Results Among 13 429 IVIs, 50 eyes of 46 patients (29 women) with symptomatic intravitreal SiO droplets were identified. Forty-one patients reported floaters at regular appointments, whereas five patients contacted the department regarding symptoms between scheduled appointments. After 1 year, 34 patients (79%) still experienced floaters, 21 (49%) reported reduced symptoms and 3 (7%) reported worsened symptoms. Eighteen patients (42%) reported being bothered, and eight (18.6%) reported that their lives were negatively affected by the floaters. Among 50 non-symptomatic eyes that had received IVI during the same period, intravitreal SiO was found in 34 (68%). No cases of symptomatic intravitreal SiO droplets were identified after switching to SiO-free syringes. Conclusion Symptomatic intravitreal SiO following IVI can cause significant and prolonged distress for affected patients. It can be avoided by using SiO-free syringes

    A new method for pharmaceutical compounding and storage of anti-VEGF biologics for intravitreal use in silicone oil-free prefilled plastic syringes.

    No full text
    Intravitreal injections of antibody-based biologics targeting vascular endothelial growth factor (VEGF) are highly effective and have markedly decreased the risk of visual impairment associated with prevalent retinal diseases, such as neovascular age-related macular degeneration and diabetes macular oedema. The diseases are chronic in their nature, and most patients need long-term therapy to suppress disease activity. We previously reported a compounding method for repackaging and storage of aflibercept (Eylea), a commonly used anti-VEGF biologic, in silicone oil-coated plastic syringes without compromising drug stability or activity. In addition to improving safety and time spent per patient, compounding of anti-VEGF biologics enables single-dose vials to be split into multiple syringes, thereby considerably reducing waste and drug expenses. However, symptomatic silicone oil droplets may deposit in the eye's vitreous body after repetitive injections. To fully avoid this complication, we here report on a novel pharmaceutical compounding method using silicone oil-free syringes and a 33 G × 9 mm Low Dead Space Needle hub injection needle. We evaluate the method for three anti-VEGF biologics commonly used in ophthalmology: aflibercept, ranibizumab (Lucentis) and bevacizumab (Avastin). Our results show that compounding and storage for one week does not compromise the functional activity of the biologics and allows for safe and cost-effective compounding of anti-VEGF biologics for intravitreal injections in prefilled silicone oil-free syringes

    Complement C4 prevents viral infection through capsid inactivation

    No full text
    The complement system is vital for anti-microbial defense. In the classical pathway, pathogen-bound antibody recruits the C1 complex (C1qC1r2C1s2) that initiates a cleavage cascade involving C2, C3, C4, and C5 and triggering microbial clearance. We demonstrate a C4-dependent antiviral mechanism that is independent of downstream complement components. C4 inhibits human adenovirus infection by directly inactivating the virus capsid. Rapid C4 activation and capsid deposition of cleaved C4b are catalyzed by antibodies via the classical pathway. Capsid-deposited C4b neutralizes infection independent of C2 and C3 but requires C1q antibody engagement. C4b inhibits capsid disassembly, preventing endosomal escape and cytosolic access. C4-deficient mice exhibit heightened viral burdens. Additionally, complement synergizes with the Fc receptor TRIM21 to block transduction by an adenovirus gene therapy vector but is partially restored by Fab virus shielding. These results suggest that the complement system could be altered to prevent virus infection and enhance virus gene therapy efficacy
    corecore