15 research outputs found
Sum of squares circuits
Designing expressive generative models that support exact and efficient inference is a core question in probabilistic ML. Probabilistic circuits (PCs) offer a framework where this tractability-vs-expressiveness trade-off can be analyzed theoretically. Recently, squared PCs encoding subtractive mixtures via negative parameters have emerged as tractable models that can be exponentially more expressive than monotonic PCs, i.e., PCs with positive parameters only. In this paper, we provide a more precise theoretical characterization of the expressiveness relationships among these models. First, we prove that squared PCs can be less expressive than monotonic ones. Second, we formalize a novel class of PCs -- sum of squares PCs -- that can be exponentially more expressive than both squared and monotonic PCs. Around sum of squares PCs, we build an expressiveness hierarchy that allows us to precisely unify and separate different tractable model classes such as Born Machines and PSD models, and other recently introduced tractable probabilistic models by using complex parameters. Finally, we empirically show the effectiveness of sum of squares circuits in performing distribution estimation
How to Turn Your Knowledge Graph Embeddings into Generative Models
Some of the most successful knowledge graph embedding (KGE) models for link
prediction -- CP, RESCAL, TuckER, ComplEx -- can be interpreted as energy-based
models. Under this perspective they are not amenable for exact
maximum-likelihood estimation (MLE), sampling and struggle to integrate logical
constraints. This work re-interprets the score functions of these KGEs as
circuits -- constrained computational graphs allowing efficient
marginalisation. Then, we design two recipes to obtain efficient generative
circuit models by either restricting their activations to be non-negative or
squaring their outputs. Our interpretation comes with little or no loss of
performance for link prediction, while the circuits framework unlocks exact
learning by MLE, efficient sampling of new triples, and guarantee that logical
constraints are satisfied by design. Furthermore, our models scale more
gracefully than the original KGEs on graphs with millions of entities
Efficacy of canakinumab in patients with Still's disease across different lines of biologic therapy: real-life data from the International AIDA Network Registry for Still's Disease
Introduction: The effectiveness of canakinumab may change according to the different times it is used after Still's disease onset. This study aimed to investigate whether canakinumab (CAN) shows differences in short- and long-term therapeutic outcomes, according to its use as different lines of biologic treatment.Methods: Patients included in this study were retrospectively enrolled from the AutoInflammatory Disease Alliance (AIDA) International Registry dedicated to Still's disease. Seventy-seven (51 females and 26 males) patients with Still's disease were included in the present study. In total, 39 (50.6%) patients underwent CAN as a first-line biologic agent, and the remaining 38 (49.4%) patients were treated with CAN as a second-line biologic agent or subsequent biologic agent.Results: No statistically significant differences were found between patients treated with CAN as a first-line biologic agent and those previously treated with other biologic agents in terms of the frequency of complete response (p =0.62), partial response (p =0.61), treatment failure (p >0.99), and frequency of patients discontinuing CAN due to lack or loss of efficacy (p =0.2). Of all the patients, 18 (23.4%) patients experienced disease relapse during canakinumab treatment, 9 patients were treated with canakinumab as a first-line biologic agent, and nine patients were treated with a second-line or subsequent biologic agent. No differences were found in the frequency of glucocorticoid use (p =0.34), daily glucocorticoid dosage (p =0.47), or concomitant methotrexate dosage (p =0.43) at the last assessment during CAN treatment.Conclusion: Canakinumab has proved to be effective in patients with Still's disease, regardless of its line of biologic treatment
Vita di mor Augin
La "Vita di mor Augin" è una leggenda agiografica, patrimonio delle Chiese cristiane orientali di lingua siriaca, che narra le vicende del santo e dei suoi compagni, facitori di miracoli e fondatori di monasteri. Mor Augin, ovvero sant’Eugenio, vissuto secondo la tradizione nel IV secolo, nacque in Egitto. Dapprima pescatore di perle, divenne monaco presso il cenobio di san Pacomio, da dove poi migrò con settanta discepoli diretto verso la regione dell’alta Mesopotamia, intorno alla città di Nisibi, ora Nusaybin (Turchia). Con la sua compagnia risanò miracolosamente malati, risuscitò defunti, ebbe a che fare con santi ed empi, deboli e potenti, sovrani amici e nemici. Si meritò l’appellativo di “secondo Cristo” e un suo sedicente discepolo ne scrisse la "Vita" in lingua siriaca, un racconto che divenne la tradizione fondante del monachesimo nella regione chiamata Tur ʿAbdin, la “montagna dei servi”, ovvero la regione della Turchia sud-orientale che è tuttora patria di cristiani di lingua aramaica siriaca. Questa traduzione in italiano della "Vita" siriaca, opera di un gruppo di studenti e docenti di lingua siriaca e storia dell'arte che hanno viaggiato nella regione nel 2020, è presentata in forma semplice, cioè senza apparato di introduzioni storiche e letterarie, né annotazioni, confidando che così com’è, avvincente e anacronistica, possa servire da chiave d’ingresso nell’agiografia siriaca. Il libretto contiene in appendice una breve guida storico-artistica del monastero di Mor Augin, sulla Montagna di Izlo, a nord-est di Nusaybin, fondato secondo la tradizione dal santo e tuttora abitato da monaci
Prenatal overgrowth and polydramnios: Would you think about Noonan syndrome?
We report on a child with prenatal findings of increased nuchal translucency, polydramnios, ascites, and overgrowth. At birth, she presented length >97 degrees centile, minor facial anomalies, megalencephaly, and Wolff-Parkinson-White syndrome. Whole-exome sequencing showed a pathogenic variant in the NRAS gene, but no mutations were found in PI3K/AKT/mTOR pathway genes
NEDD8-activating enzyme inhibition potentiates the anti-myeloma activity of natural killer cells
Abstract Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFβ-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM
Clinical presentation of secondary infectious complications in COVID-19 patients in intensive care unit treated with tocilizumab or standard of care
The hypothesis of this study is that tocilizumab should affect common signs of infection due to its immunosuppressive properties. Primary aim of the study was to investigate whether the administration of tocilizumab to critically ill patients with COVID-19, led to a different clinical presentation of infectious complications compared to patients who did not receive tocilizumab. Secondary aim was investigating differences in laboratory parameters between groups
Coagulative Disorders in Critically Ill COVID-19 Patients with Acute Distress Respiratory Syndrome: A Critical Review
In critically ill patients with acute respiratory distress syndrome (ARDS) coronavirus disease 2019 (COVID-19), a high incidence of thromboembolic and hemorrhagic events is reported. COVID-19 may lead to impairment of the coagulation cascade, with an imbalance in platelet function and the regulatory mechanisms of coagulation and fibrinolysis. Clinical manifestations vary from a rise in laboratory markers and subclinical microthrombi to thromboembolic events, bleeding, and disseminated intravascular coagulation. After an inflammatory trigger, the mechanism for activation of the coagulation cascade in COVID-19 is the tissue factor pathway, which causes endotoxin and tumor necrosis factor-mediated production of interleukins and platelet activation. The consequent massive infiltration of activated platelets may be responsible for inflammatory infiltrates in the endothelial space, as well as thrombocytopenia. The variety of clinical presentations of the coagulopathy confronts the clinician with the difficult questions of whether and how to provide optimal supportive care. In addition to coagulation tests, advanced laboratory tests such as protein C, protein S, antithrombin, tissue factor pathway inhibitors, D-dimers, activated factor Xa, and quantification of specific coagulation factors can be useful, as can thromboelastography or thromboelastometry. Treatment should be tailored, focusing on the estimated risk of bleeding and thrombosis. The aim of this review is to explore the pathophysiology and clinical evidence of coagulation disorders in severe ARDS-related COVID-19 patients