550 research outputs found
Radial Evolution of Sunward Strahl Electrons in the Inner Heliosphere
The heliospheric magnetic field (HMF) exhibits local inversions, in which the field apparently “bends back” upon itself. Candidate mechanisms to produce these inversions include various configurations of upstream interchange reconnection; either in the heliosphere, or in the corona where the solar wind is formed. Explaining the source of these inversions, and how they evolve in time and space, is thus an important step towards explaining the origins of the solar wind. Inverted heliospheric magnetic field lines can be identified by the anomalous sunward (i.e. inward) streaming of the typically anti-sunward propagating, field-aligned (or anti-aligned), beam of electrons known as the “strahl”. We test if the pitch angle distribution (PAD) properties of sunward-propagating strahl are different from those of outward strahl. We perform a statistical study of strahl observed by the Helios spacecraft, over heliocentric distances spanning ≈0.3 – 1 AU. We find that sunward strahl PADs are broader and less intense than their outward directed counterparts; particularly at distances 0.3 – 0.75 AU. This is consistent with sunward strahl being subject to additional, path-length dependent, scattering in comparison to outward strahl. We conclude that the longer and more variable path from the Sun to the spacecraft, along inverted magnetic field, leads to this additional scattering. The results also suggest that the relative importance of scattering along this additional path length drops off with heliocentric distance. These results can be explained by a relatively simple, constant-rate, scattering process
Preterm Birth in Caucasians Is Associated with Coagulation and Inflammation Pathway Gene Variants
Spontaneous preterm birth (<37 weeks gestation—PTB) occurs in ∼12% of pregnancies in the United States, and is the largest contributor to neonatal morbidity and mortality. PTB is a complex disease, potentially induced by several etiologic factors from multiple pathophysiologic pathways. To dissect the genetic risk factors of PTB a large-scale high-throughput candidate gene association study was performed examining 1536 SNP in 130 candidate genes from hypothesized PTB pathways. Maternal and fetal DNA from 370 US Caucasian birth-events (172 cases and 198 controls) was examined. Single locus, haplotype, and multi-locus association analyses were performed separately on maternal and fetal data. For maternal data the strongest associations were found in genes in the complement-coagulation pathway related to decidual hemorrhage in PTB. In this pathway 3 of 6 genes examined had SNPs significantly associated with PTB. These include factor V (FV) that was previously associated with PTB, factor VII (FVII), and tissue plasminogen activator (tPA). The single strongest effect was observed in tPA marker rs879293 with a significant allelic (p = 2.30×10−3) and genotypic association (p = 2.0×10−6) with PTB. The odds ratio (OR) for this SNP was 2.80 [CI 1.77–4.44] for a recessive model. Given that 6 of 8 markers in tPA were statistically significant, sliding window haplotype analyses were performed and revealed an associating 4 marker haplotype in tPA (p = 6.00×10−3). The single strongest effect in fetal DNA was observed in the inflammatory pathway at rs17121510 in the interleukin-10 receptor antagonist (IL-10RA) gene for allele (p = 0.01) and genotype (p = 3.34×10−4). The OR for the IL-10RA genotypic additive model was 1.92 [CI 1.15–3.19] (p = 2.00×10−3). Finally, exploratory multi-locus analyses in the complement and coagulation pathway were performed and revealed a potentially significant interaction between a marker in FV (rs2187952) and FVII (rs3211719) (p<0.001). These results support a role for genes in both the coagulation and inflammation pathways, and potentially different maternal and fetal genetic risks for PTB
Using Social Media to Promote STEM Education: Matching College Students with Role Models
STEM (Science, Technology, Engineering, and Mathematics) fields have become
increasingly central to U.S. economic competitiveness and growth. The shortage
in the STEM workforce has brought promoting STEM education upfront. The rapid
growth of social media usage provides a unique opportunity to predict users'
real-life identities and interests from online texts and photos. In this paper,
we propose an innovative approach by leveraging social media to promote STEM
education: matching Twitter college student users with diverse LinkedIn STEM
professionals using a ranking algorithm based on the similarities of their
demographics and interests. We share the belief that increasing STEM presence
in the form of introducing career role models who share similar interests and
demographics will inspire students to develop interests in STEM related fields
and emulate their models. Our evaluation on 2,000 real college students
demonstrated the accuracy of our ranking algorithm. We also design a novel
implementation that recommends matched role models to the students.Comment: 16 pages, 8 figures, accepted by ECML/PKDD 2016, Industrial Trac
Pointed Wings, Low Wingloading and Calm Air Reduce Migratory Flight Costs in Songbirds
Migratory bird, bat and insect species tend to have more pointed wings than non-migrants. Pointed wings and low wingloading, or body mass divided by wing area, are thought to reduce energy consumption during long-distance flight, but these hypotheses have never been directly tested. Furthermore, it is not clear how the atmospheric conditions migrants encounter while aloft affect their energy use; without such information, we cannot accurately predict migratory species' response(s) to climate change. Here, we measured the heart rates of 15 free-flying Swainson's Thrushes (Catharus ustulatus) during migratory flight. Heart rate, and therefore rate of energy expenditure, was positively associated with individual variation in wingtip roundedness and wingloading throughout the flights. During the cruise phase of the flights, heart rate was also positively associated with wind speed but not wind direction, and negatively but not significantly associated with large-scale atmospheric stability. High winds and low atmospheric stability are both indicative of the presence of turbulent eddies, suggesting that birds may be using more energy when atmospheric turbulence is high. We therefore suggest that pointed wingtips, low wingloading and avoidance of high winds and turbulence reduce flight costs for small birds during migration, and that climate change may have the strongest effects on migrants' in-flight energy use if it affects the frequency and/or severity of high winds and atmospheric instability
Does Global Warming Increase Establishment Rates of Invasive Alien Species? A Centurial Time Series Analysis
BACKGROUND: The establishment rate of invasive alien insect species has been increasing worldwide during the past century. This trend has been widely attributed to increased rates of international trade and associated species introductions, but rarely linked to environmental change. To better understand and manage the bioinvasion process, it is crucial to understand the relationship between global warming and establishment rate of invasive alien species, especially for poikilothermic invaders such as insects. METHODOLOGY/PRINCIPAL FINDINGS: We present data that demonstrate a significant positive relationship between the change in average annual surface air temperature and the establishment rate of invasive alien insects in mainland China during 1900-2005. This relationship was modeled by regression analysis, and indicated that a 1 °C increase in average annual surface temperature in mainland China was associated with an increase in the establishment rate of invasive alien insects of about 0.5 species year⁻¹. The relationship between rising surface air temperature and increasing establishment rate remained significant even after accounting for increases in international trade during the period 1950-2005. Moreover, similar relationships were detected using additional data from the United Kingdom and the contiguous United States. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the perceived increase in establishments of invasive alien insects can be explained only in part by an increase in introduction rate or propagule pressure. Besides increasing propagule pressure, global warming is another driver that could favor worldwide bioinvasions. Our study highlights the need to consider global warming when designing strategies and policies to deal with bioinvasions
A new classification method using array Comparative Genome Hybridization data, based on the concept of Limited Jumping Emerging Patterns
<p>Abstract</p> <p>Background</p> <p>Classification using aCGH data is an important and insufficiently investigated problem in bioinformatics. In this paper we propose a new classification method of DNA copy number data based on the concept of limited Jumping Emerging Patterns. We present the comparison of our limJEPClassifier to SVM which is considered the most successful classifier in the case of high-throughput data.</p> <p>Results</p> <p>Our results revealed that the classification performance using limJEPClassifier is significantly higher than other methods. Furthermore, we show that application of the limited JEP's can significantly improve classification, when strongly unbalanced data are given.</p> <p>Conclusion</p> <p>Nowadays, aCGH has become a very important tool, used in research of cancer or genomic disorders. Therefore, improving classification of aCGH data can have a great impact on many medical issues such as the process of diagnosis and finding disease-related genes. The performed experiment shows that the application of Jumping Emerging Patterns can be effective in the classification of high-dimensional data, including these from aCGH experiments.</p
Neural responses to others’ pain vary with psychopathic traits in healthy adult males
Disrupted empathic processing is a core feature of psychopathy. Neuroimaging data have suggested that individuals with high levels of psychopathic traits show atypical responses to others' pain in a network of brain regions typically recruited during empathic processing (anterior insula, inferior frontal gyrus, and mid- and anterior cingulate cortex). Here, we investigated whether neural responses to others' pain vary with psychopathic traits within the general population in a similar manner to that found in individuals at the extreme end of the continuum. As predicted, variation in psychopathic traits was associated with variation in neural responses to others' pain in the network of brain regions typically engaged during empathic processing. Consistent with previous research, our findings indicated the presence of suppressor effects in the association of levels of the affective-interpersonal and lifestyle-antisocial dimensions of psychopathy with neural responses to others' pain. That is, after controlling for the influence of the other dimension, higher affective-interpersonal psychopathic traits were associated with reduced neural responses to others' pain, whilst higher lifestyle-antisocial psychopathic traits were associated with increased neural responses to others' pain. Our findings provide further evidence that atypical function in this network might represent neural markers of disrupted emotional and empathic processing; that the two dimensions of psychopathy might tap into distinct underlying vulnerabilities; and, most importantly, that the relationships observed at the extreme end of the psychopathy spectrum apply to the nonclinical distribution of these traits, providing further evidence for continuities in the mechanisms underlying psychopathic traits across the general population
- …