3,461 research outputs found

    Evidence for the Galactic X-ray Bulge II

    Full text link
    A mosaic of 5 \ros~PSPC pointed observations in the Galactic plane (l∼25∘l\sim25^{\circ}) reveals X-ray shadows in the 0.5−2.00.5-2.0 keV band cast by distant molecular clouds. The observed on-cloud and off-cloud X-ray fluxes indicate that ∼15\sim15% and ∼37\sim37% of the diffuse X-ray background in this direction in the \tq~keV and 1.5 keV bands, respectively, originates behind the molecular gas which is located at ∼\sim3 kpc from the Sun. The implication of the derived background X-ray flux beyond the absorbing molecular cloud is consistent with, and lends further support to recent observations of a Galactic X-ray bulge.Comment: 19 pages, 5 figures, 2 table

    High Velocity Cloud Complex H: A Satellite of the Milky Way in a Retrograde Orbit?

    Full text link
    Observations with the Green Bank Telescope of 21cm HI emission from the high-velocity cloud Complex H suggest that it is interacting with the Milky Way. A model in which the cloud is a satellite of the Galaxy in an inclined, retrograde circular orbit reproduces both the cloud's average velocity and its velocity gradient with latitude. The model places Complex H at approximately 33 kpc from the Galactic Center on a retrograde orbit inclined about 45 degrees to the Galactic plane. At this location it has an HI mass > 6 10^6 Msun and dimensions of at least 10 by 5 kpc. Some of the diffuse HI associated with the cloud has apparently been decelerated by interaction with Galactic gas. Complex H has similarities to the dwarf irregular galaxy Leo A and to some compact high-velocity clouds, and has an internal structure nearly identical to parts of the Magellanic Stream, with a pressure P/k about 100 cm^{-3} K.Comment: 12 pages includes 4 figures. To be published in Astrophysical Journal Letters, 1 July 200

    HI Clouds Beyond the Galactic Disk

    Full text link
    Recent observations in the 21cm line with the Green Bank Telescope have changed our view of the neutral interstellar medium (ISM) in several ways. The new data show that in the inner parts of the Milky Way the disk-halo interface is composed of many discrete HI clouds. The clouds lie in a layer more than one kpc thick and follow Galactic rotation. Their origin and evolution is unknown. In the outer Galaxy, the new data show that the high-velocity cloud Complex H is likely a satellite on a retrograde orbit interacting with some extended component of the Milky Way's ISM. These observations place new constraints on models of the ISM and are directly related to the work of Don Cox and Ron Reynolds.Comment: 8 pages includes 2 figures. To appear in "How Does the Galaxy Work?", eds. E.J. Alfaro, E. Perez, & J. Franco, Kluwer, Proceedings of a Conference held 23-27 June 2003 in Granada, Spai

    Radio Polarimetry of the ELAIS N1 Field: Polarized Compact Sources

    Get PDF
    We present deep polarimetric observations at 1420 MHz of the European Large Area ISO Survey North 1 region (ELAIS N1) as part of the Dominion Radio Astrophysical Observatory Planck Deep Fields project. By combining closely spaced aperture synthesis fields, we image a region of 7.43 square degrees to a maximum sensitivity in Stokes Q and U of 78 microJy/beam, and detect 786 compact sources in Stokes I. Of these, 83 exhibit polarized emission. We find that the differential source counts (log N - log p) for polarized sources are nearly constant down to p > 500 microJy, and that these faint polarized radio sources are more highly polarized than the strong source population. The median fractional polarization is (4.8 +/- 0.7)% for polarized sources with Stokes I flux density between 1 and 30 mJy; approximately three times larger than sources with I > 100 mJy. The majority of the polarized sources have been identified with galaxies in the Spitzer Wide Area Infrared Extragalactic Survey (SWIRE) image of ELAIS N1. Most of the galaxies occupy regions in the IRAC 5.8/3.6 micron vs. 8.0/4.5 micron color-color diagram associated with dusty AGNs, or with ellipticals with an aging stellar population. A few host galaxies have colors that suggests significant PAH emission in the near-infrared. A small fraction, 12%, of the polarized sources are not detected in the SWIRE data. None of the polarized sources in our sample appears to be associated with an actively star-forming galaxy.Comment: 28 pages, 8 Figures. Figures 2 and 3 as separate gif images. Accepted for publication in the Astrophysical Journa

    A population-based approach to background discrimination in particle physics

    Full text link
    Background properties in experimental particle physics are typically estimated using control samples corresponding to large numbers of events. This can provide precise knowledge of average background distributions, but typically does not consider the effect of fluctuations in a data set of interest. A novel approach based on mixture model decomposition is presented as a way to estimate the effect of fluctuations on the shapes of probability distributions in a given data set, with a view to improving on the knowledge of background distributions obtained from control samples. Events are treated as heterogeneous populations comprising particles originating from different processes, and individual particles are mapped to a process of interest on a probabilistic basis. The proposed approach makes it possible to extract from the data information about the effect of fluctuations that would otherwise be lost using traditional methods based on high-statistics control samples. A feasibility study on Monte Carlo is presented, together with a comparison with existing techniques. Finally, the prospects for the development of tools for intensive offline analysis of individual events at the Large Hadron Collider are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser. Minor changes have been made to the text with respect to the published article with a view to improving readabilit

    An Interaction of a Magellanic Leading Arm High Velocity Cloud with the Milky Way Disk

    Full text link
    The Leading Arm of the Magellanic System is a tidally formed HI feature extending \sim 60\arcdeg from the Magellanic Clouds ahead of their direction of motion. Using atomic hydrogen (HI) data from the Galactic All Sky-Survey (GASS), supplemented with data from the Australia Telescope Compact Array, we have found evidence for an interaction between a cloud in the Leading Arm and the Galactic disk where the Leading Arm crosses the Galactic plane. The interaction occurs at velocities permitted by Galactic rotation, which allows us to derive a kinematic distance to the cloud of 21 kpc, suggesting that the Leading Arm crosses the Galactic Plane at a Galactic radius of R≈17R\approx 17 kpc.Comment: 14 pages, 5 figures, accepted to Astrophysical Journal Letters. Full resolution version available at ftp://ftp.atnf.csiro.au/pub/people/nmcclure/papers/LeadingArm_apjl.pd

    Extended HI Rotation Curve and Mass Distribution of M31

    Full text link
    New HI observations of Messier 31 (M31) obtained with the Effelsberg and Green Bank 100-m telescopes make it possible to measure the rotation curve of that galaxy out to ~35 kpc. Between 20 and 35 kpc, the rotation curve is nearly flat at a velocity of ~226 km/s. A model of the mass distribution shows that at the last observed velocity point, the minimum dark-to-luminous mass ratio is \~0.5 for a total mass of 3.4 10^11 Msol at R < 35 kpc. This can be compared to the estimated MW mass of 4.9 10^11 Msol for R < 50 kpc.Comment: 4 pages, 2 figures, accepted for publication in ApJ Letter

    Log-parabolic spectra and particle acceleration in blazars - II: The BeppoSAX wide band X-ray spectra of Mkn 501

    Full text link
    We present the results of a spectral and temporal study of the complete set of BeppoSAX NFI (11) and WFC (71) observations of the BL Lac object Mkn 501. The WFC 2-28 keV data, reported here for the first time, were collected over a period of about five years, from September 1996 to October 2001. These observations, although not evenly distributed, show that Mkn 501, after going through a very active phase from spring 1997 to early 1999, remained in a low brightness state until late 2001. The data from the LECS, MECS and PDS instruments, covering the wide energy interval 0.1-150 keV, have been used to study in detail the spectral variability of the source. We show that the X-ray energy distribution of Mkn 501 is well described by a log-parabolic law in all luminosity states. This model allowed us to obtain good estimates of the SED synchrotron peak energy and of its associated power. The strong spectral variability observed, consisting of strictly correlated changes between the synchrotron peak energy and bolometric flux, suggests that the main physical changes are not only due to variations of the maximum Lorentz factor of the emitting particles but that other quantities must be varying as well. During the 1997 flare the high energy part of the spectrum of Mkn 501 shows evidence of an excess above the best fit log-parabolic law suggesting the existence of a second emission component that may be responsible for most of the observed variability.Comment: Accepted for publication in Astronomy & Astrophysics (11 pages, 7 figures
    • …
    corecore