1,549 research outputs found

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1−xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    Liver function as an engineering system

    Get PDF
    Process Systems Engineering has tackled a wide range of problems including manufacturing, the environment, and advanced materials design. Here we discuss how tools can be deployed to tackle medical problems which involve complex chemical transformations and spatial phenomena looking in particular at the liver system, the body's chemical factory. We show how an existing model has been developed to model distributed behavior necessary to predict the behavior of drugs for treating liver disease. The model has been used to predict the effects of suppression of de novo lipogenesis, stimulation of β-oxidation and a combination of the two. A reduced model has also been used to explore the prediction of behavior of hormones in the blood stream controlling glucose levels to ensure that levels are kept within safe bounds using interval methods. The predictions are made resulting from uncertainty in two key parameters with oscillating input resulting from regular feeding

    Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders

    Full text link
    We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindrical configuration are derived and analyzed in the next two parts of this work.Comment: 26 pages, 1 Figure. Submitted to Classical and Quantum Gravit

    Homogeneity, Flatness and "Large" Extra Dimensions

    Get PDF
    We consider a model in which the universe is the direct product of a (3+1)-dimensional Friedmann, Robertson-Walker (FRW) space and a compact hyperbolic manifold (CHM). Standard Model fields are confined to a point in the CHM (i.e. to a brane). In such a space, the decay of massive Kaluza-Klein modes leads to the injection of any initial bulk entropy into the observable (FRW) universe. Both Kolmogoro-Sinai mixing due to the non-integrability of flows on CHMs and the large statistical averaging inherent in the collapse of the initial entropy onto the brane smooth out any initial inhomogeneities in the distribution of matter and of 3-curvature on any slice of constant 3-position. If, as we assume, the initial densities and curvatures in each fundamental correlation volume are drawn from some universal underlying distributions independent of location within the space, then these smoothing mechanisms effectively reduce the density and curvature inhomogeneities projected onto the FRW. This smoothing is sufficient to account for the current homogeneity and flatness of the universe. The fundamental scale of physics can be \gsim 1TeV. All relevant mass and length scales can have natural values in fundamental units. All large dimensionless numbers, such as the entropy of the universe, are understood as consequences of the topology of spacetime which is not explained. No model for the origin of structure is proffered.Comment: minor changes, matches version published in Phys. Rev. Let

    Bronchial responses to substance P after antigen challenge in the guinea-pig: in vivo and in vitro studies

    Get PDF
    The effect of antigen challenge on the airway responses to substance P and on the epithelial neutral endopeptidase (NEP) activity was investigated in aerosol sensitized guinea-pigs. In vivo, bronchial responses to aerosolized substance P were similar to the responses observed in antigen-challenged guinea-pigs and in the control groups. In contrast, when the guinea-pigs were pretreated with the NEP inhibitor, phosphoramidon, a significant increase in the airway responses to substance P was observed after antigen challenge in vivo. However, in vitro, the contractile responses of the tracheal smooth muscle to substance P were similar between groups of guinea-pigs, in respect to the presence or absence of the epithelium and/or phosphoramidon. Histological studies showed an accumulation of eosinophils in the tracheal submucosa after antigen challenge and intact epithelial cells. These results show that in vivo bronchial hyperresponsiveness to substance P after antigen challenge in the guinea-pig is not associated with increased responses of the smooth muscle to exogenous SP in vitro. In addition, the results with phosphoramidon suggest that loss of NEP activity cannot account for the in vivo bronchial hyperresponsiveness to substance P presently observed

    DNA hybridization to mismatched templates: a chip study

    Get PDF
    High-density oligonucleotide arrays are among the most rapidly expanding technologies in biology today. In the {\sl GeneChip} system, the reconstruction of the target concentration depends upon the differential signal generated from hybridizing the target RNA to two nearly identical templates: a perfect match (PM) and a single mismatch (MM) probe. It has been observed that a large fraction of MM probes repeatably bind targets better than the PMs, against the usual expectation from sequence-specific hybridization; this is difficult to interpret in terms of the underlying physics. We examine this problem via a statistical analysis of a large set of microarray experiments. We classify the probes according to their signal to noise (S/NS/N) ratio, defined as the eccentricity of a (PM, MM) pair's `trajectory' across many experiments. Of those probes having large S/NS/N (>3>3) only a fraction behave consistently with the commonly assumed hybridization model. Our results imply that the physics of DNA hybridization in microarrays is more complex than expected, and they suggest new ways of constructing estimators for the target RNA concentration.Comment: 3 figures 1 tabl
    • …
    corecore